
(   : parameters)qℓ ≥ 0, λ > 0

Reconstruct  a discrete-valued vector !   
from underdetermined linear measurements !  !

x ∈ {r1, …, rL}N ⊂ ℝN

y = Ax + v ∈ ℝM (M < N)

1. Discrete-Valued Vector Reconstruction

3. Simulation Results
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ℓ1−2

We propose a possibly nonconvex optimization problem to reconstruct a discrete-valued vector from its 
underdetermined linear measurements. The proposed sum of sparse regularizers (SSR) optimization uses the sum of 
sparse regularizers as a regularizer for the discrete-valued vector. We also propose two proximal splitting algorithms 
for the SSR optimization problem on the basis of alternating direction method of multipliers (ADMM) and primal-dual 
splitting (PDS). The ADMM based algorithm can achieve faster convergence, whereas the PDS based algorithm does 
not require the computation of any inverse matrix.

2. Proposed Method

Application 
✦ signal detection for overloaded multiple-input multiple-output (MIMO) 
✦ multiuser detection for machine to machine communications 
✦ faster-than-Nyquist (FTN) signaling
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Sum of sparse regularizers (SSR) optimization

sparse regularizer

!  : measurement matrix 
!  : noise vector
A ∈ ℝM×N

v ∈ ℝM )(

Goal: 

TuAP2: TMTSP PII - Optimization methods, EUSIPCO 2019, A Coruña, Spain

idea:   has some zero elements because  x − rℓ1 x ∈ {r1, …, rL}N

(N, M) = (200,150)(N, M) = (200,160), SNR = 15 dB

The proposed algorithms with nonconvex regularizers,  
especially with the  and  norms, can achieve much better SER performance. ℓp ℓ0

Binary vector reconstruction ( !  )x ∈ {−1,1}N

✦ !  
✦ !  
✦ ! : i.i.d. Gaussian 
✦ sparse regularizer !  

- !  norm 
- !  norm 
- !  norm  
- !  norm 
- !  difference [1]

(r1, r2) = (−1,1)
(p1, p2) = (1/2,1/2)
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ADMM-SSR converges 
faster than PDS-SSR

nonconvex

(distribution: ! )pℓ = Pr(xn = rℓ) (ℓ = 1,…, L)

xAy = + v

reconstruct
x̂

M

N

[4]

✓ The proposed approach can use any proximable sparse regularizer for ! .  
✓ The proposed approach can also be applied to the reconstruction of complex discrete-valued vector. 

h( ⋅ )

✦ nonconvex 
- !  
- !   
- !  [1]

h(p)(u) = ∥u∥p
p

h(0)(u) = ∥u∥0
h(1−2)(u) = ∥u∥1 − ∥u∥2

✦ convex 
- !h(1)(u) = ∥u∥1

Example: 

Example: Binary vector reconstruction ( !  )x ∈ {−1,1}N

✦ !  
✦ !

(r1, r2) = (−1,1)
(p1, p2) = (1/2,1/2)

regularizer: !
1
2

(h(s + 1) + h(s − 1))

minimum value at ! and !1 −1

ADMM-SSR: ADMM [2] based algorithm for SSR optimization 
✓ faster convergence, require matrix inversion 

PDS-SSR: PDS [3] based algorithm for SSR optimization 
✓ slower convergence, no matrix inversion

minimize
s∈ℝN
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∑
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