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Lattice Reduction-Aided Detection for Overloaded MIMO Using
Slab Decoding∗

Ryo HAYAKAWA†a), Student Member, Kazunori HAYASHI†b), and Megumi KANEKO††c), Members

SUMMARY In this paper, we propose an overloaded multiple-input
multiple-output (MIMO) signal detection scheme with slab decoding and
lattice reduction (LR). The proposed scheme firstly splits the transmitted
signal vector into two parts, the post-voting vector composed of the same
number of signal elements as that of receive antennas, and the pre-voting
vector composed of the remaining elements. Secondly, it reduces the candi-
dates of the pre-voting vector using slab decoding and determines the post-
voting vectors for each pre-voting vector candidate by LR-aided minimum
mean square error (MMSE)-successive interference cancellation (SIC) de-
tection. From the performance analysis of the proposed scheme, we derive
an upper bound of the error probability and show that it can achieve the
full diversity order. Simulation results show that the proposed scheme can
achieve almost the same performance as the optimal ML detection while
reducing the required computational complexity.
key words: overloaded MIMO, signal detection, lattice reduction, slab
decoding

1. Introduction

Many research efforts are being increasingly devoted to-
wards the design of future multiple-input multiple-output
(MIMO) communication systems. In common MIMO sys-
tems, the number of receive antennas are set to be greater
than that of transmitted streams. In some cases, however,
sufficient number of receive antennas may not be available
at the receiver due to limitations in size, weight, cost, and/or
power consumption. Such MIMO systems, where the num-
ber of receive antennas are less than that of transmitted
streams, are called overloaded (underdetermined) MIMO
systems [1], [2].

For overloaded MIMO systems, various signal detec-
tion schemes have been proposed [1]–[8]. Maximum like-
lihood (ML) detection can achieve the best bit error rate
(BER) performance [9], however, its computational com-
plexity increases exponentially with the number of trans-
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mitted streams as it searches over all possible candidates
of transmitted signals. In order to reduce the complexity,
slab-sphere decoding (SSD), which is based on the idea of
sphere decoding [10], [11] for non-overloaded MIMO sys-
tems, has been proposed in [1]. SSD firstly splits the trans-
mitted signals into two parts, i.e., the signals containing the
same number of signal elements as that of receive antennas
minus one, and the remaining signals. The candidates of the
latter signals are searched by slab decoding, and then the
former signals corresponding to each candidate are obtained
by sphere decoding. Although SSD can achieve comparable
performance as ML detection, its complexity is still high,
especially in the worst case, where the number of possible
candidates could not be reduced. On the other hand, lattice
reduction (LR) [12], [13]-aided minimum mean square error
(MMSE)-successive interference cancellation (SIC) detec-
tion [14] with pre-voting cancellation (PVC) has been pro-
posed in [3]. This scheme is composed of three steps. In
step 1, it divides the transmitted signals into two parts, the
post-voting vector and pre-voting vector. The former con-
tains the same number of signal elements as that of receive
antennas, and the latter contains the remaining elements. In
step 2, it obtains the estimate of the post-voting vectors for
each pre-voting vector candidate by using LR-aided MMSE-
SIC detection. Finally, the estimate of the original signal is
determined by maximum likelihood among all the possible
candidates. Since this scheme searches all pre-voting vec-
tors, its complexity increases exponentially with the differ-
ence between the number of the transmitted streams and that
of receive antennas.

In this paper, we propose a low complexity signal de-
tection scheme for overloaded MIMO systems, whose pre-
liminary version has been presented in [15]. The proposed
scheme, referred as Slab-LR-MMSE-SIC, employs both the
idea of slab decoding and LR-aided MMSE-SIC. Unlike
the conventional LR-aided MMSE-SIC with PVC [3], the
proposed Slab-LR-MMSE-SIC reduces the number of can-
didates for the pre-voting vector by using slab decoding,
which considerably decreases the computational complexity
without significant performance loss. Moreover, compared
to the conference version in [15], the following contribu-
tions have been added in this paper:

• a novel selection criterion for the range of search in slab
decoding is proposed. With the proposed criterion, we
can determine the range of search by setting an accept-
able error probability of slab decoding.

Copyright c⃝ 2016 The Institute of Electronics, Information and Communication Engineers
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• a simple method for selecting the indexes of pre-voting
vector and post-voting vector is proposed, in order to
reduce computational complexity.
• an upper bound for the error probability of the pro-

posed Slab-LR-MMSE-SIC is derived and it is shown
that Slab-LR-MMSE-SIC can achieve the full diversity
order.

Simulation results show that the proposed Slab-LR-MMSE-
SIC can achieve almost the same BER performance as the
conventional schemes while significantly reducing the num-
ber of candidates of pre-voting vector and hence the required
computational complexity.

In the remainder of the paper, we will use the follow-
ing notations. Superscript T and H denote transpose and
Hermitian transpose, respectively. In represents an n × n
identity matrix and 0n B [0, . . . , 0]T ∈ Rn. For a vector

x = [x1, . . . , xn]T ∈ Rn, ∥x∥ B
√∑n

i=1 x2
i denotes ℓ2-norm

of x. For a complex matrix A, Re{A} and Im{A} represent
the real and imaginary parts of A, respectively. For a setV,
|V| denotes the cardinality ofV. E[·] stands for expectation
operator.

2. System Model

Figure 1 shows the MIMO system model with n transmit an-
tennas and m receive antennas. For simplicity, the number of
transmitted streams is assumed to be equal to that of trans-
mit antennas and precoding is not considered. In the trans-
mitter, information bits are mapped to n symbols, converted
by the serial-parallel converter, and sent from the transmit
antennas. Here, s̃ j ( j = 1, . . . , n) represents the symbol sent
from the j-th transmit antenna and s̃ = [s̃1, . . . , s̃n]T ∈ S̃n

is the transmitted signal vector, where S̃ denotes the al-
phabet of the transmitted symbol, with E[s̃] = 0n and
E[s̃s̃H] = σ2

s In. We assume quadrature phase shift keying
(QPSK) or quadrature amplitude modulation (QAM) sym-
bols. The received signal vector ỹ = [ỹ1, . . . , ỹm]T ∈ Cm,
where ỹi (i = 1, . . . ,m) is the received signal at the i-th re-
ceive antenna, is given by

ỹ = H̃s̃ + ũ, (1)

where

Fig. 1 Model of the overloaded MIMO system.

H̃ =


h̃1,1 · · · h̃1,n
...

. . .
...

h̃m,1 · · · h̃m,n

 ∈ Cm×n (2)

represents the flat fading channel matrix. Here, h̃i, j is the
channel gain from the j-th transmit antenna to the i-th re-
ceive antenna, and assumed to be constant over at least
one symbol time and to be known to the receiver. ũ =
[ṽ1, . . . , ṽm]T ∈ Cm is a zero mean white complex Gaussian
noise vector with covariance matrix of σ2

v Im.
We also consider the real model equivalent to the com-

plex model (1) as

y = Hs + u, (3)

where

y B
[
Re{ỹ}
Im{ỹ}

]
∈ R2m,

H B
[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
∈ R2m×2n,

s B
[
Re{s̃}
Im{s̃}

]
∈ S2n, u B

[
Re{ũ}
Im{ũ}

]
∈ R2m, (4)

and S B
{
Re{x̃}

∣∣∣ x̃ ∈ S̃
}
∪

{
Im{x̃}

∣∣∣ x̃ ∈ S̃
}
. Note that{

Re{x̃}
∣∣∣ x̃ ∈ S̃

}
=

{
Im{x̃}

∣∣∣ x̃ ∈ S̃
}

for QPSK or QAM.

3. Conventional Overloaded MIMO Signal Detection
Schemes

For overloaded MIMO systems with m < n, the conven-
tional sphere decoding [11] and LR-aided detection [14],
[16], [17] are not directly applicable given that the chan-
nel matrix H̃ is fat, i.e., the number of rows is less than that
of columns. In this section, we briefly review the existing
methods applying sphere decoding and LR-aided MMSE-
SIC detection to the overloaded MIMO systems.

3.1 Slab-Sphere Decoding [1]

The estimate of s with ML detection is expressed as

ŝML = arg min
u∈S2n
∥y − Hu∥2. (5)

In the same way as sphere decoding, slab-sphere decoding
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obtains ŝML by solving

ŝML = arg min
u∈S2n
∥y − Hu∥2 s.t. ∥y − Hu∥2 ≤ C2, (6)

where C is a constant controlling the range of search. By
using QR decomposition of H, i.e., H = QR, the constraint
in (6) can be rewritten as

∥z − Ru∥2 ≤ C2, (7)

where z B QTy. Since m < n, (7) can be expressed as∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥


z1
...

z2m

 −

r1,1 · · · r1,2m · · · r1,2n

0
. . .

... · · ·
...

0 0 r2m,2m · · · r2m,2n




u1
...

u2m
...

u2n



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ C2,

(8)

where zi, u j, and ri, j represent the i-th element of z, the j-
th element of u, and the (i, j) element of R (i = 1, . . . , 2m
and j = 1, . . . , 2n), respectiely. To search all u1, . . . , u2n
satisfying (8), we firstly focus on the 2m-th row of z − Ru
and find all u2m, . . . , u2n satisfying

|z2m − (r2m,2mu2m + · · · + r2m,2nu2n)|2 ≤ C2 (9)

by using slab decoding algorithm [1]. Next, we search all
u1, . . . , u2m−1 satisfying (8) for each u2m, . . . , u2n satisfying
(9). Once u2m, . . . , u2n are fixed, we can rewrite (8) as∥∥∥∥∥∥∥∥∥∥


w1
...

w2m−1

 −

r1,1 · · · r1,2m−1

0
. . .

...
0 0 r2m−1,2m−1




u1
...

u2m−1


∥∥∥∥∥∥∥∥∥∥

2

≤ C2 − |z2m − (r2m,2mu2m + · · · + r2m,2nu2n)|2, (10)

where

wi B zi − (ri,2mu2m + · · · + ri,2nu2n) (11)

for i = 1, . . . , 2m − 1. Since the upper triangular matrix
in the left side of (10) is square, all u1, . . . , u2m−1 satisfying
(10) can be obtained by using the conventional sphere de-
coding. Thus, we apply sphere decoding to (10) for each
u2m, . . . , u2n satisfying (9) and obtain all u1, . . . , u2n satisfy-
ing (8). Finally, we select u minimizing ∥y − Hu∥2 over the
candidate vectors as the estimate of s.

3.2 LR-Aided MMSE-SIC Detection with PVC [3]

PVC is an approach to apply LR-aided MMSE-SIC detec-
tion [14] to overloaded MIMO systems. In the signal de-
tection with PVC, we divide the index set of the transmit
antennas {1, . . . , n} into

A = {p1, . . . , pn−m} ⊂ {1, . . . , n}, (12)
B = {q1, . . . , qm} = {1, . . . , n} \ A. (13)

In addition, we divide the elements of the transmitted signal
vector s̃ into two vectors as

s̃A B [s̃p1 , . . . , s̃pn−m ]T (pre-voting vector), (14)

s̃B B [s̃q1 , . . . , s̃qm ]T (post-voting vector). (15)

Similarly, the columns of the channel matrix H̃ =

[h̃1, . . . , h̃n] are divided into two matrices as

H̃A B [h̃p1 , . . . , h̃pn−m ], (16)

H̃B B [h̃q1 , . . . , h̃qm ]. (17)

By the above splitting, (1) can be rewritten as

ỹ = H̃A s̃A + H̃B s̃B + ũ. (18)

We consider all candidates of pre-voting vector s̃A and then
estimate the post-voting vector s̃B corresponding to each
candidate of s̃A by using LR-aided MMSE-SIC. Thus, the
problem is to find all candidates ũA ∈ S̃n−m and ũB ∈ S̃m

satisfying

ỹ = H̃AũA + H̃BũB + ũ. (19)

Let ũ1
A, . . . , ũ

K
A be all possible candidates of ũA, where K B∣∣∣S̃∣∣∣n−m

. Assuming ũA = ũk
A (k = 1, . . . ,K),

rk B ỹ − H̃Aũk
A = H̃BũB + ũ (20)

can be obtained from (19). Since H̃B is an m×m square ma-
trix, (20) can be regarded as the model of common MIMO
systems, where the number of receive antennas is equal
to that of transmit antennas. Thus ũk

B, the estimate of
ũB corresponding to ũk

A, can be obtained by applying the
conventional LR-aided MMSE-SIC to (20). As the algo-
rithm for LR, complex Lenstra-Lenstra-Lovász (LLL) al-
gorithm [12], which is the complex version of LLL algo-
rithm [13], is employed in [3]. After obtaining ũk

A and ũk
B

for all k = 1, . . . ,K, we get

k̂ = arg min
k∈{1,...,K}

∥∥∥ỹ − H̃Aũk
A − H̃Bũk

B
∥∥∥2

(21)

as the index corresponding to the final estimated vectors of
of s̃A and s̃B.

Note that A and B are determined in [3] based on the
max-min diagonal (MD) criterion [18]

BMD = arg max
B

{
min

i∈{1,...,m}

∣∣∣r̂i,i

∣∣∣} , (22)

where r̂i,i denotes the (i, i) element of the upper triangular
matrix R̂ obtained from QR decomposition of Ĥ′ = Q̂R̂,
which is given by applying LR to Ĥ = [H̃T

B (σv/σs)Im]T .
Although this criterion gives a good performance, it requires
the calculation of LR for each candidate of B.

4. Proposed Signal Detection Scheme

Since LR-aided MMSE-SIC detection with PVC searches
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all candidates of the pre-voting vector sA, its complexity
increases exponentially with n − m, i.e., the difference be-
tween the number of transmit antennas and receive antennas.
In this section, we propose Slab-LR-MMSE-SIC as a low
complexity signal detection scheme. Slab-LR-MMSE-SIC
reduces the required complexity by decreasing the number
of candidates for sA with slab decoding.

4.1 Signal Detection Scheme with Slab Decoding and LR

In order to reduce the candidates of sA, we consider the real
model equivalent to (18) as

y = HAsA + HBsB + u, (23)

where

HA B
[
Re{H̃A} −Im{H̃A}
Im{H̃A} Re{H̃A}

]
, sA B

[
Re{s̃A}
Im{s̃A}

]
,

HB B
[
Re{H̃B} −Im{H̃B}
Im{H̃B} Re{H̃B}

]
, sB B

[
Re{s̃B}
Im{s̃B}

]
. (24)

Moreover, we transform (23) into

y = H̄s̄ + u, (25)

to implement slab decoding algorithm, where

H̄ B
[
HB HA

]
, (26)

s̄ =
[
s̄1, . . . , s̄2n

]T
B

[
sT
B sT

A
]T
. (27)

By using the QR decomposition of H̄ = Q̄R̄, we can rewrite
(25) as

z̄ = R̄s̄ + η̄, (28)

where z̄ B Q̄T
y and η̄ B Q̄T

u. The equation of the 2m-th
row of (28) is given by

z̄2m = r̄2m,2m s̄2m + · · · + r̄2m,2n s̄2n + η̄2m. (29)

Thus, by using slab decoding algorithm, we find all
ū2m, . . . , ū2n satisfying

−CSLAB ≤ z̄2m − (r̄2m,2mū2m + · · · + r̄2m,2nū2n) ≤ CSLAB,
(30)

where CSLAB is a constant whose selection will be discussed
in Sect. 4.2. It should be noted here that slab decoding gives
the candidates for not only sA but also s̄2m because sA =
[s̄2m+1, . . . , s̄2n]T. However, we utilize the candidates of sA
only, and s̄2m will be estimated as one of the elements of the
post-voting vector using LR-aided MMSE-SIC later. From
the candidates of sA, we can also obtain the candidates of
s̃A. Let L denote the number of candidates of s̃A obtained
by using slab decoding algorithm, and we represent the L
candidates as ũk1

A, . . . , ũ
kL
A .

Next, we obtain candidates of post-voting vectors
ũk1
B , . . . , ũ

kL
B corresponding to ũk1

A, . . . , ũ
kL
A by LR-aided

MMSE-SIC. Assuming ũA = ũℓA (ℓ = k1, . . . , kL), (19) can
be rewritten as

rℓ B ỹ − H̃AũℓA = H̃BũB + ũ. (31)

In order to obtain the estimate of the post-voting vector ũB
corresponding to ũℓA, we firstly rewrite (31) as

r̂ℓ = ĤũB + û, (32)

where

r̂ℓ B
[

rℓ
0m

]
, Ĥ B

 H̃B
σv
σs

Im

 , û B
 ũ

−σv
σs

ũB

 . (33)

Then, we obtain the unimodular matrix T satisfying Ĥ′ =
ĤT by applying LR to Ĥ, and (32) can be further rewritten
as

r̂ℓ = Ĥ′u′B + û, (34)

where u′B B T−1ũB. Moreover, by using QR decomposition
of Ĥ′ = Q̂R̂, (34) can be finally rewritten as

ẑℓ = R̂u′B + η̂, (35)

where ẑℓ B Q̂T r̂ℓ and η̂ B Q̂T
û. The estimate of u′B can

be obtained in the same way as the conventional LR-aided
MMSE-SIC in [14]. Thereby, we can get ũℓB, i.e., the esti-
mate of ũB corresponding to ũℓA, by using ũB = Tu′B.

Finally, we choose the best candidate, which maxi-
mizes the likelihood, as the detected signal. Specifically,
we obtain

ℓ̂ = arg min
ℓ∈{k1,...,kL}

∥∥∥ỹ − H̃AũℓA − H̃BũℓB
∥∥∥2

(36)

and select ũℓ̂A and ũℓ̂B as the estimates of s̃A and s̃B, respec-
tively.

4.2 Selection of CSLAB

In the proposed algorithm, the selection of CSLAB is one of
the key issues, since it has a direct impact on the computa-
tional complexity and performance. Here, we discuss how
to set CSLAB, such that the complexity is reduced as much as
possible while keeping the performance loss to an accept-
able level.

Let Pe,SLAB be the probability that the true transmit sig-
nals s̄2m, . . . , s̄2n is not included in the set of candidates ob-
tained with slab decoding. For true s̄2m, . . . , s̄2n, we have

z̄2m − (r̄2m,2m s̄2m + · · · + r̄2m,2n s̄2n) = η̄2m (37)

from (29), thus

Pe,SLAB = 1 − Pr(−CSLAB ≤ η̄2m ≤ CSLAB). (38)

Since η̄ = Q̄T
u, η̄2m is written as
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η̄2m = q̄1,2mv1 + q̄2,2mv2 + · · · + q̄2m,2mv2m, (39)

where q̄i,2m (i = 1, . . . , 2m) represents the (i, 2m) element
of Q̄. Moreover, since vi (i = 1, . . . , 2m) are Gaussian ran-
dom variables with zero mean and variance σ2

v/2 and Q̄ is
an orthogonal matrix, η̄2m is also a Gaussian random vari-
able with zero mean and variance σ2

v/2. Therefore, Pe,SLAB
can be calculated as

Pe,SLAB = 2
∫ +∞

CSLAB

1√
2π(σ2

v/2)
exp

(
− x2

2(σ2
v/2)

)
dx

=
2
√
π

∫ +∞

CSLAB/σv

exp
(
−t2

)
dt

= erfc (CSLAB/σv) , (40)

where

erfc(x) =
2
√
π

∫ +∞

x
exp

(
−t2

)
dt (41)

is the complementary error function. From (40), CSLAB can
be given as

CSLAB = σverfc−1 (
Pe,SLAB

)
, (42)

thus we can determine CSLAB by setting the acceptable prob-
ability Pe,SLAB that slab decoding fails to obtain the true
s̄2m, . . . , s̄2n.

4.3 Selection ofA and B

The selection of A and B also has an impact on the com-
putational complexity, because the number of candidates of
pre-voting vectors obtained by slab decoding depends on the
selection. Thus, we consider how to select A and B here,
and propose a simple but effective selection criterion named
maximum variance (MV) criterion.

Let X B z̄2m −
(
r̄2m,2mS̄ 2m + · · · + r̄2m,2nS̄ 2n

)
, where

S̄ 2m, . . . , S̄ 2n are i.i.d. random variables distributed uni-
formly on S. The middle term in (30) for each candidate of
(ū2m, . . . , ū2n) equals to the value of X for the corresponding
realization of

(
S̄ 2m, . . . , S̄ 2n

)
. Thus, the ratio of the num-

ber of candidates of (ū2m, . . . , ū2n) satisfying (30) to that of
all candidates (i.e., |S|2n−2m+1) is Pr (−CSLAB ≤ X ≤ CSLAB),
which should be minimized to reduce the number of candi-
dates of pre-voting vectors obtained by slab decoding. In
our approach, therefore, we selectA and B so that the vari-
ance of X is as large as possible. Since

µx B E[X] = z2m, (43)

σ2
x B E[(X − µx)2] =

(
r̄2

2m,2m + · · · + r̄2
2m,2n

)
σ2

s/2, (44)

for QPSK or QAM symbols, we obtain[
Â, B̂

]
= arg max

[A,B]

{
r̄2

2m,2m + · · · + r̄2
2m,2n

}
, (45)

where r̄2m, j ( j = 2m, . . . , 2n) denotes the (2m, j) element of
the upper triangular matrix obtained by QR decomposition

of H̄ = [HB HA]. Note that MV criterion does not require
LR for the evaluation, thus it has much lower complexity
than MD criterion.

5. Performance Analysis

In this section, we evaluate the error probability of the pro-
posed Slab-LR-MMSE-SIC taking a similar approach as
in [3]. Let UA = {ũk1

A, . . . , ũ
kL
A} and U = {ũk1 , . . . , ũkL } be

the set of the candidates of s̃A obtained by using slab decod-
ing and that of s̃ after LR-aided MMSE-SIC, respectively. In
addition, we denote ŝ as the final estimate of the true trans-
mitted signal vector s̃ obtained with Slab-LR-MMSE-SIC.
The error probability of the proposed approach Pe is written
as

Pe = 1 − Pr(ŝ = s̃ | s̃ ∈ U) Pr(s̃ ∈ U)
= 1 − (1 − Pr(ŝ , s̃ | s̃ ∈ U))(1 − Pr(s̃ < U))
= 1 − (1 − Pe,SEL)(1 − Pe,PV), (46)

where Pe,SEL = Pr(ŝ , s̃ | s̃ ∈ U) is the probability that the
final estimate of s̃ is not equal to s̃ thoughU contains s̃, and
Pe,PV = Pr(s̃ < U) is the probability thatU does not contain
the true transmitted signal vector. As mentioned in Sect. 4.1,
the candidates of s̄2m are not used in order to reduce the can-
didates of s̃A = [s̄2m+1, . . . , s̄2n]T though they were obtained
by slab decoding. Thus, the probability that the set of can-
didates of the pre-voting vector UA includes the true pre-
voting vector s̃A is greater than the success probability of
slab decoding, namely

Pr(s̃A ∈ UA) ≥ 1 − Pe,SLAB. (47)

Similarly, we also define s̃B as the true post-voting vector.
Using (47), Pe,PV can be bounded as

Pe,PV

= 1 − Pr(ũℓB = s̃B | ũℓA = s̃A) Pr(s̃A ∈ UA)

≤ 1 − Pr(ũℓB = s̃B | ũℓA = s̃A)(1 − Pe,SLAB)

= (1 − Pr(ũℓB = s̃B | ũℓA = s̃A))(1 − Pe,SLAB) + Pe,SLAB

≤ (1 − Pr(ũℓB = s̃B | ũℓA = s̃A)) + Pe,SLAB, (48)

where 1 − Pr(ũℓB = s̃B | ũℓA = s̃A) is the probability that
the post-voting vector s̃B is not correctly estimated in (31)
for the true pre-voting vector s̃A. As shown in [3], [19], we
have

1 − Pr(ũℓB = s̃B | ũℓA = s̃A)

≤ cmm

(
2
cδ

)m (2m − 1)!
(m − 1)!

(
1
σ2
v

)−m

, (49)

where cmm is a constant depending on m, 1/2 < δ < 1 is a
parameter in complex LLL algorithm, and

cδ = 2
m
2

(
2

2δ − 1

)−m(m+1)/4

. (50)
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If s̃ ∈ U and the transmitted signal vector s̃ can be
correctly obtained with ML detection among all possible
candidates, Slab-LR-MMSE-SIC can also select s̃ among
candidates in U by using (36), which obtains the candidate
having maximum likelihood among candidates inU. Thus,
we have

Pe,SEL ≤ Pe,ML, (51)

where Pe,ML is the error probability of ML detection, which
can be bounded as

Pe,ML ≤ cML

(
1
σ2
v

)−m

, (52)

where cML is a constant independent of σ2
v [20]. From (46),

(48), (49), (51) and (52), therefore, the error probability of
the proposed scheme Pe is bounded as

Pe = Pe,PV + Pe,SEL − Pe,PVPe,SEL

≤ Pe,PV + Pe,ML

≤ cmm

(
2
cδ

)m (2m − 1)!
(m − 1)!

(
1
σ2
v

)−m

+ Pe,SLAB + cML

(
1
σ2
v

)−m

. (53)

It should be noted that we can control Pe,SLAB as the pa-
rameter of the acceptable error probability of slab decoding.
Specifically, by choosing Pe,SLAB as

Pe,SLAB ∝
(

1
σ2
v

)−m

, (54)

Pe can be bounded as

Pe ≤ c
(

1
σ2
v

)−m

, (55)

where c is a constant which is independent of σ2
v , mean-

ing that the proposed scheme can achieve a diversity order
of m. Since the maximum diversity order for n × m over-
loaded MIMO is known to be m [3], the proposed scheme
can achieve the full diversity order.

6. Simulation Results

In this section, we demonstrate the performance of the pro-
posed Slab-LR-MMSE-SIC using computer simulations. In
the simulations, H̃ is assumed to be time-invariant and is
composed of i.i.d. complex Gaussian random variables with
zero mean and unit variance. All the results are obtained
by averaging the performance for 1,000 realizations of H̃.
The acceptable error probability of slab decoding in the pro-
posed Slab-LR-MMSE-SIC is set to be Pe,SLAB = BERML/a
at each Eb/N0, where a > 0 is a constant and BERML is the
BER achieved by ML detection, which is the same as that of
SSD. The parameter δ in the complex LLL algorithm is set
as δ = 3/4.

Fig. 2 BER performance (n = 4, m = 2, QPSK).

Fig. 3 BER performance (n = 6, m = 2, QPSK).

6.1 BER Performance

First, we evaluate the BER performance of Slab-LR-
MMSE-SIC and conventional signal detection schemes.
Figures 2, 3, and 4 show the BER performance of the pro-
posed Slab-LR-MMSE-SIC for n = 4, m = 2 with QPSK
modulation, for n = 6, m = 2 with QPSK modulation, and
for n = 4, m = 2 with 16-QAM, respectively. The BERs
of the conventional MMSE detection (MMSE), LR-aided
MMSE-SIC detection with PVC (PVC), and slab sphere de-
coding (SSD) are also plotted in the same figures. In all the
figures, we can see that the conventional LR-aided MMSE-
SIC detection can achieve almost the same BER perfor-
mance as the optimal ML detection. In addition, the pro-
posed Slab-LR-MMSE-SIC can also achieve similar perfor-
mance as the conventional schemes. It should be noted here
that Slab-LR-MMSE-SIC with the proper parameter choice
can achieve the same diversity order as ML detection, which
is confirmed by the simulation results.



HAYAKAWA et al.: LATTICE REDUCTION-AIDED DETECTION FOR OVERLOADED MIMO USING SLAB DECODING
1703

Fig. 4 BER performance (n = 4, m = 2, 16-QAM).

Fig. 5 Ratio of the number of pre-voting vector candidates p =

L/
∣∣∣S̃∣∣∣n−m.

6.2 Number of Candidates of Pre-Voting Vectors

Next, we evaluate the number of candidates obtained by slab
decoding in Slab-LR-MMSE-SIC. Figure 5 shows the ratio
of the number of candidates p = L/

∣∣∣S̃∣∣∣n−m
in percentage,

where L denotes the number of candidates of s̃A obtained
by slab decoding in Slab-LR-MMSE-SIC, and

∣∣∣S̃∣∣∣n−m
repre-

sents that in the conventional scheme with PVC. Since dif-
ferent values of CSLAB are used for each Eb/N0, the amount
p for higher Eb/N0 is less than that for lower Eb/N0. We can
also see that smaller a, which means larger Pe,SLAB, results
in larger reduction of the number of candidates though it en-
tails a slight performance degradation as shown in Figs. 2,
3, and 4. In addition, we observe a larger reduction of the
number of candidates for greater values of n −m and higher
modulation levels. Note that, by reducing the number of
candidates for s̃A, the required number of LR-aided MMSE-
SIC detections for s̃B is also reduced. Therefore, Slab-LR-
MMSE-SIC is able to reduce the computational complexity
as compared to the conventional schemes, while achieving a

Fig. 6 BER performance (n = 4, m = 2, QPSK).

Fig. 7 Ratio of the number of pre-voting vector candidates p = L/
∣∣∣S̃∣∣∣n−m

(n = 4, m = 2, QPSK).

near-optimal performance.

6.3 Comparison of the Selection Criteria ofA and B

We demonstrate the effectiveness of the proposed MV cri-
terion against the conventional MD criterion for n = 4,
m = 2 with QPSK modulation. Figure 6 shows the BER per-
formances of Slab-LR-MMSE-SIC with MV criterion and
MD criterion. We can observe that both MV criterion and
MD criterion provide almost the same BER performance
as the optimal ML detection, while MD criterion requires
higher computational complexity than MV criterion. Fig-
ure 7 shows the ratio of the number of candidates of pre-
voting vector obtained with each criterion. We can see that
Slab-LR-MMSE-SIC with MV criterion has less candidates
than that with MD criterion, and hence the proposed MV
criterion enables further reduction of the required computa-
tional complexity.
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7. Conclusion

In this paper, we have proposed the overloaded MIMO sig-
nal detection scheme with slab decoding and LR, referred as
Slab-LR-MMSE-SIC. With the proposed parameter choice
in slab decoding and the selection of the indexes for the pre-
voting vector, Slab-LR-MMSE-SIC can significantly reduce
the candidates of pre-voting vector compared to the conven-
tional scheme, closely approaching the BER performance
of optimal ML detection. In addition, we have analyzed the
error probability of Slab-LR-MMSE-SIC and have clarified
that the proposed scheme can achieve full diversity order
with a proper parameter choice in slab decoding.
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