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Error Recovery for Massive MIMO Signal Detection
via Reconstruction of Discrete-Valued Sparse Vector∗

Ryo HAYAKAWA†a), Student Member and Kazunori HAYASHI††b), Member

SUMMARY In this paper, we propose a novel error recovery method
for massive multiple-input multiple-output (MIMO) signal detection, which
improves an estimate of transmitted signals by taking advantage of the
sparsity and the discreteness of the error signal. We firstly formulate the
error recovery problem as the maximum a posteriori (MAP) estimation and
then relax the MAP estimation into a convex optimization problem, which
reconstructs a discrete-valued sparse vector from its linear measurements.
By using the restricted isometry property (RIP),we also provide a theoretical
upper bound of the size of the reconstruction error with the optimization
problem. Simulation results show that the proposed error recovery method
has better bit error rate (BER) performance than that of the conventional
error recovery method.
key words: massive MIMO, signal detection, sum-of-absolute-value opti-
mization, restricted isometry property

1. Introduction

Because of the significant increase of the required data rate
and throughput in wireless communications systems, much
attention has been paid to massive multiple-input multiple-
output (MIMO) systems with tens or hundreds of antennas
[1]. For massive MIMO systems, a low-complexity signal
detection schemewill be required because the computational
complexity increases alongwith the number of antennas. Al-
though linear signal detections, such as the zero forcing (ZF)
and the minimum mean-square-error (MMSE) detections,
can be possible candidates for massive MIMO systems, the
performance is much inferior to that of the optimal maxi-
mum likelihood (ML) detection. To achieve nearly optimal
performance, some non-linear detection schemes have also
been proposed. The likelihood ascent search (LAS) [2] and
the reactive tabu search (RTS) [3] are non-linear detection
schemes based on the local neighborhood search of likeli-
hood. The belief propagation-based detection [4] and the
convex optimization-based detection [5] have also been pro-
posed.

As an another approach for massive MIMO signal de-
tection, post-detection sparse error recovery (PDSR) has
been proposed [6]. It improves the estimate obtained by
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some conventional detection methods, such as ZF or MMSE
detection, using the fact that the error vector between the
true transmitted signal vector and its estimate is sparse if
the estimate is reliable enough. By using a tentative es-
timate with some conventional detection, PDSR transforms
the original linear equation of the received signal model with
the transmitted signal vector into a linear equation with the
error vector. If the error vector is sparse, errors can be re-
constructed with compressed sensing techniques [7], [8]. In
[6], multipath matching pursuit (MMP) [9], which is one of
greedy algorithms and is an extension of orthogonal match-
ing pursuit (OMP), is used to estimate the sparse error vector.

This paper proposes a novel error recovery method for
massive MIMO signal detection on the basis of the prelimi-
nary conference paper [10]. While the conventional PDSR
uses the sparsity of the error vector, the proposed method
uses the fact that the error is not only sparse but also discrete-
valued in practical digital communications systems. To take
advantage of the both properties, we firstly formulate the
error recovery problem as the maximum a posteriori (MAP)
estimation. For large-scale systems, however, the MAP esti-
mation requires a prohibitive computational complexity be-
cause it is a combinatorial optimization problem. We thus
relax it into the sum-of-absolute-value (SOAV) optimiza-
tion problem [11], [12] with a similar but slightly different
manner compared to [13], which considers the multiuser de-
tection in machine-to-machine communications. While the
relaxation in [13] might result in a non-convex optimization
problem in general, the proposed relaxation in this paper
can always give a convex one. The convex SOAV optimiza-
tion problem can be efficiently solved with proximal splitting
methods [14], such as Beck-Teboulle proximal gradient al-
gorithm and Douglas-Rachford algorithm. To obtain further
better performance, we also propose an iterative error re-
covery, where the estimate obtained in the previous iteration
is used as the tentative estimate in each iteration. The pro-
posed method can be applied for binary phase shift keying
(BPSK), quadrature phase shift keying (QPSK), and any rect-
angular quadratic amplitude modulation (QAM). As a the-
oretical analysis, by using the restricted isometry property
(RIP) [15], we give a theoretical upper bound for the size
of the reconstruction error, which is defined as the differ-
ence between the solution of the SOAV optimization and the
true error vector. Simulation results show that the proposed
method has better performance than that of the conventional
error recovery method for especially large MIMO systems.

In the rest of the paper, we use the following notations:
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We denote the set of all real numbers by R and the set of
all complex numbers by C. Re{·} and Im{·} indicate the real
part and the imaginary part, respectively. Superscript (·)T

and (·)H denote the transpose and the Hermitian transpose,
respectively. We represent the imaginary unit by j, the iden-
tity matrix by I , the M × N matrix whose elements are all 1
by 1M×N , and the M × N matrix whose elements are all 0
by 0M×N . For a vector a = [a1 · · · aN ]T ∈ RN , the `0 norm
‖a‖0 of a denotes the number of nonzero elements in a. We
also define the `1, `2, and `∞ norms of a as ‖a‖1 =

∑N
i=1 |ai |,

‖a‖2 =
√∑N

i=1 a2
i , and ‖a‖∞ = maxi∈{1,...,N } |ai |, respec-

tively. For an index set I ⊂ {1, . . . , N }, aI ∈ RN is defined
by

[aI]i =



ai (i ∈ I)
0 (i < I)

, (1)

where [aI]i denotes the ith element of aI . |I | and
Ic = {1, . . . , N } \ I represent the cardinality of I and the
complement set of I, respectively. We denote the Euclidean
inner product by 〈·, ·〉.

2. System Model

We consider aMIMO systemwith n transmit antennas and m
receive antennas. For simplicity, precoding is not considered
and the number of transmitted streams is assumed to be equal
to that of transmit antennas. We denote the symbol alphabets
by S̃. The transmitted signal vector s̃ = [s̃1 · · · s̃n]T ∈ S̃n

is composed of signals transmitted from n transmit an-
tennas, where s̃ j ( j = 1, . . . , n) denotes the symbol sent
from the jth transmit antenna. The received signal vector
ỹ = [ ỹ1 · · · ỹm] ∈ Cm, where ỹi (i = 1, . . . ,m) denotes the
signal received at the ith receive antenna, is given by

ỹ = H̃ s̃ + ṽ, (2)

where

H̃ =



h̃1,1 · · · h̃1,n
...

. . .
...

h̃m,1 · · · h̃m,n



∈ Cm×n (3)

is a flat fading channel matrix and h̃i, j represents the channel
gain from the jth transmit antenna to the ith receive an-
tenna. ṽ ∈ Cm is the circular complex Gaussian noise vector
with zero mean and covariance matrix of σ2

ṽ I . The signal
model (2) can be rewritten as

y = Hs + v, (4)

where

y =

[
Re{ ỹ}
Im{ ỹ}

]
∈ R2m, H =

[
Re{H̃ } −Im{H̃ }
Im{H̃ } Re{H̃ }

]
∈ R2m×2n,

s =

[
Re{ s̃}
Im{ s̃}

]
∈ S2n, v =

[
Re{ ṽ}
Im{ ṽ}

]
∈ R2m, (5)

and S =
{
Re{ x̃} | x̃ ∈ S̃

}
∪

{
Im{ x̃} | x̃ ∈ S̃

}
.

3. Conventional Sparse Error Recovery Method

In the conventional sparse error recovery method [6], the
non-sparse system model (2), where s̃ is a dense vec-
tor, is converted into the sparse one to apply the com-
pressed sensing technique. Let s̃est ∈ C

n be a tenta-
tive estimate of s̃ obtained by some detection method,
e.g., ZF or MMSE detection. When we use the linear
MMSE detection, for example, the tentative estimate is
given by s̃est =

(
H̃HH̃ + σ2

ṽ I
)−1

H̃H ỹ. We then obtain
s̃d
est = QS̃( s̃est) ∈ S̃n, where the element-wise function QS̃(·)
maps each element into its closest symbol in S̃, i.e., it pro-
vides the hard decision of s̃est. The key point is that the error
vector ẽ = s̃− s̃d

est is sparse if the tentative estimate is reliable
enough. The transformation into the sparse system can be
performed by subtracting H̃ s̃d

est from both sides of (2) as

ỹ ′
def
= ỹ − H̃ s̃d

est = H̃
(
s̃ − s̃d

est
)
+ ṽ (6)

= H̃ ẽ + ṽ. (7)

From (7), we can reconstruct the error vector ẽ via some
compressed sensing algorithm, such as OMP or MMP. De-
noting the estimate of the error vector ẽ as ẽest, we can obtain
the improved estimate of s̃ as s̃d

est + ẽest.

4. Proposed Error Recovery Method

Using the transformation from the non-sparse system into
the sparse one, we can reconstruct the error vector via
compressed sensing technique. However, the conventional
method cannot use the discreteness of the error vector though
it is actually not only sparse but also discrete-valued in prac-
tical digital communications systems. Moreover, the hard
decision s̃d

est of the transmitted signal vector instead of the
soft decision s̃est is used to calculate the error vector, which
may result in performance degradation. To achieve better
performance, we here propose an error recovery method tak-
ing advantage of both sparsity and discreteness as well as the
soft decision of the transmitted signal vector. Since the prior
distribution of the error is not uniform in general, we firstly
consider the MAP estimation of the error vector.

4.1 MAP Estimation

The proposed method uses the real signal model (4) dur-
ing error recovery. Let sest = [sest,1 · · · sest,2n]T ∈ R2n

be a tentative estimate of s = [s1 · · · s2n]T and sd
est =

[sd
est,1 · · · sd

est,2n]T = QS(sest) ∈ S2n be its hard decision.
We firstly transform (4) into

y ′ = He + v, (8)

where y ′ = y − Hsd
est and e = s − sd

est.
The MAP estimation problem of maximizing p(e |
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y ′) ∝ p(y ′ | e)p(e) is equivalent to minimizing − log p(y ′ |
e)− log p(e). Since y ′ is written as (8) and v is the Gaussian
noise vector having the covariance matrix of (σ2

ṽ/2)I , the
log likelihood function is given by

log p(y ′ | e) = −
1
σ2
ṽ

‖y ′ − He‖22 −
1
2

log(πσ2
ṽ ). (9)

Assuming the independence of the elements of e, we approxi-
mate p(e) ≈

∏2n
j=1 p(e j ), where e j represents the jth element

of e. Thus, the objective function − log p(y ′ | e) − log p(e)
to be minimized for the MAP estimation can be reduced to

1
σ2
ṽ

‖y ′ − He‖22 −
2n∑
j=1

log p(e j ). (10)

To minimize (10), an explicit expression of p(e j ) will be
required. For simplicity, we assume QPSK with S̃ = {1 +
j,−1 + j,−1 − j, 1 − j}, E[ s̃] = 0n×1, and E[ s̃ s̃H] = 2I .
Since e j = s j − sd

est, j and s j, sd
est, j ∈ {1,−1}, e j is discrete-

valued and takes a value only in B = {b0, b1, b2}, where
b0 = 0, b1 = −2, b2 = 2. Thus, with the probability p`, j =
p(e j = b` ) (` = 0, 1, 2), p(e j ) can be written as

p(e j ) =
2∏
`=0

pδ(e j,b` )
`, j

(11)

for e j = b` (` = 0, 1, 2), where δ(α, β) = 1 if α = β and
δ(α, β) = 0 otherwise, andwe define 00 = 1. By substituting
(11) into (10), the objective function is rewritten as

1
σ2
ṽ

‖y ′ − He‖22 −
2n∑
j=1

2∑
`=0

δ(e j, b` ) log p`, j (12)

=
1
σ2
ṽ

‖y ′ − He‖22 −
2n∑
j=1

2∑
`=0

(1 − ‖e j − b` ‖0) log p`, j .

(13)

Hence, the MAP estimation problem can be written as

minimize
x∈B2n

1
σ2
ṽ

‖y ′ − Hx‖22 +
2n∑
j=1

2∑
`=0

(log p`, j )‖x j − b` ‖0.

(14)

The probability p`, j is given by

p0, j = p(s j = +1), p1, j = p(s j = −1), p2, j = 0 (15)

if sd
est, j = +1, and

p0, j = p(s j = −1), p1, j = 0, p2, j = p(s j = +1) (16)

if sd
est, j = −1. Although both of the prior probabilities p(s j =

+1) and p(s j = −1) are usually set to be 1/2 when we have
no prior information, we can use the tentative estimate sest as
the prior information in the error recovery problem. Hence,
we calculate the posterior probabilities p(s j = +1 | y) and

p(s j = −1 | y) by using sest, and substitute them as the
prior probabilities in (15) and (16). To obtain the posterior
probability, we calculate the posterior log likelihood ratio
(LLR) of the transmitted symbols

λ j = log
p(s j = +1 | y)
p(s j = −1 | y)

(17)

from the estimate sest, which is the soft decision of s. For
the reduction of the computational complexity, we assume
the independence of each received signal and approximate
(17) as

λ j ≈

2m∑
i=1

log
p(yi | s j = +1)
p(yi | s j = −1)

. (18)

We further rewrite yi as yi = hi, j s j + ξ
j
i , where ξ

j
i =∑2n

k=1,k,j hi,k sk + vi . Regarding ξ
j
i as the Gaussian ran-

dom variable with mean µ
ξ
j
i
and variance σ2

ξ
j
i

by using the
Gaussian approximation [4], we further approximate (18) as

2m∑
i=1

log
p(yi | s j = +1)
p(yi | s j = −1)

≈

2m∑
i=1



log




1√
2πσ2

ξ
j
i

exp
*...
,

−

(
yi − hi, j − µξ j

i

)2

2σ2
ξ
j
i

+///
-




− log




1√
2πσ2

ξ
j
i

exp
*...
,

−

(
yi + hi, j − µξ j

i

)2

2σ2
ξ
j
i

+///
-





(19)

=

2m∑
i=1




−

(
yi − hi, j − µξ j

i

)2

2σ2
ξ
j
i

+

(
yi + hi, j − µξ j

i

)2

2σ2
ξ
j
i



(20)

=

2m∑
i=1

2hi, j
(
yi − µξ j

i

)
σ2
ξ
j
i

, (21)

where

µ
ξ
j
i
=

2n∑
k=1,k,j

hi,kE[sk], (22)

σ2
ξ
j
i

=

2n∑
k=1,k,j

h2
i,k

(
1 − E[sk]2

)
+
σ2
ṽ

2
. (23)

The expectation E[sk] is not available in general. We thus
obtain the approximations of µ

ξ
j
i
andσ2

ξ
j
i

by replacing E[sk]
with
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s′est,k =



−1 (sest,k < −1)
sest,k (−1 ≤ sest,k < 1)
1 (1 ≤ sest,k )

, (24)

which is bounded in [−1, 1], because sk ∈ {1,−1} and hence
−1 ≤ E[sk] ≤ 1. From the approximated posterior LLR λ̂ j

obtained by using (24), the approximations of the posterior
probabilities are given by

p(s j = +1 | y)=
eλ̂ j

1 + eλ̂ j

=
1
2




1 + tanh *
,

λ̂ j

2
+
-




(25)

p(s j = −1 | y)=
1

1 + eλ̂ j

=
1
2




1 − tanh *
,

λ̂ j

2
+
-



. (26)

4.2 Relaxation into Convex Optimization Problem

Since the problem (14) is the combinatorial optimization
problem, it requires a prohibitive computational complexity
for large n. We thus consider to relax (14) into a convex
optimization problem in the similar way as [13] with the idea
used in compressed sensing. However, simple replacements
of B2n and `0 norm with R2n and `1 norm respectively will
not necessarily result in the convex problem because log p`, j
could be zero or negative. Hence, we firstly replace B2n and
log p`, j with R2n and q`, j ≥ 0 respectively as

minimize
x∈R2n

1
σ2
ṽ

‖y ′ − Hx‖22 +
2n∑
j=1

2∑
`=0

q`, j ‖x j − b` ‖0,

(27)

and then relax (27) into the SOAV optimization problem
[11], [12] as

minimize
x∈R2n

1
σ2
ṽ

‖y ′ − Hx‖22 +
2n∑
j=1

2∑
`=0

q`, j |x j − b` |.

(28)

The coefficients q`, j are determined so that they satisfy∑
`∈L j

(log p`, j )‖x j − b` ‖0 + Cj =
∑
`∈L j

q`, j ‖x j − b` ‖0

(29)

for all x j = b` (` ∈ L j ), where L j = {` | p`, j > 0} and Cj

is a positive constant. Note that the indices ` corresponding
to p`, j = 0 is not considered in the condition (29). For
` < L j , q`, j is fixed to 0. The condition (29) requires that the
objective functions in (14) and (27) have the same value for
x j = b` (` ∈ L j ) up to a constant. For example, if sd

est, j = 1,
p0, j, p1, j > 0 and p2, j = 0, thenL j = {0, 1} and the condition
(29) becomes q1, j = log p1, j + Cj and q0, j = log p0, j + Cj .
We thus select asCj = −min(log p0, j, log p1, j )+C̃j (C̃j ≥ 0)
and obtain q0, j, q1, j ≥ 0. In this case, q2, j is fixed to 0. In
general, the condition (29) can be written as

q`, j = log p`, j +
Cj

|L j | − 1
(30)

for all ` ∈ L j (See Appendix A). Hence, we can ob-
tain a nonnegative q`, j by selecting Cj as Cj = −(|L j | −

1) min`∈L j log p`, j + C̃j (C̃j ≥ 0). It should be noted that
in the conventional relaxation method [13], the `0 norm in
the right hand of (29) is replaced with the `1 norm to keep
the value of the objective function in (14) and (28) on B2n,
except for a constant term. In some cases, however, the op-
timization problem with the conventional relaxation is still
non-convex due to a negative value of q`, j . On the other
hand, the proposed relaxation can always select a positive
q`, j and ensure that the optimization problem (28) is convex.

The optimization problem (28) can be solved with prox-
imal splitting methods [14]. The improved estimate of the
transmitted signal vector s is obtained as sd

est + eest, where
eest is the minimizer of the problem (28).

4.3 Iterative Error Recovery

To further improve the performance, we also propose an iter-
ative error recovery. In each iteration, the estimate obtained
in the previous iteration is used as the tentative estimate. The
algorithm of the proposed method is summarized as follows:

Algorithm 1: (Iterative error recovery via SOAV optimiza-
tion)

1. Obtain an initial tentative estimate sest ∈ R
2n.

2. Iterate a)–e) for T times.

a. Calculate the approximation of posterior LLR λ̂ j

from the tentative estimate sest.
b. Compute p`, j with (15), (16), (25), and (26).
c. Obtain q`, j satisfying (29).
d. Solve the optimization problem (28) and obtain the

solution eest ∈ R
2n.

e. Modify the tentative estimate into sd
est+ eest ∈ R

2n.

3. Obtain the final hard decision by applying QS(·) to the
tentative estimate.

4.4 Extension to other Modulation Schemes

Although we have assumed QPSK modulation so far, we
can apply the proposed method for any rectangular QAM
symbols. For example, when we use 16-QAM symbols
whose real and imaginary parts take +3, +1, −1, or −3,
the error e j takes a value only in B = {0,±2,±4,±6}.
The corresponding SOAV optimization problem can be ob-
tained by replacing

∑2n
j=1

∑2
`=0 q`, j |x j − b` | in (28) with∑2n

j=1
∑6
`=0 q`, j |x j − b` |, where b0 = 0, b1 = −6, b2 =

−4, b3 = −2, b4 = 2, b5 = 4, and b6 = 6. The coeffi-
cients q`, j can be obtained by using the LLR calculation
for 16-QAM symbols [17] and the optimization problem
can also be solved via proximal splitting methods. How-
ever, for some other modulation methods such as 8-phase
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shift keying (PSK), we cannot directly apply the proposed
method. When we use 8-PSK symbols with the alphabet S̃ ={
1, 1√

2
+ j 1√

2
, j,− 1√

2
+ j 1√

2
,−1,− 1√

2
− j 1√

2
,−j, 1√

2
− j 1√

2

}
, the

proposed method may provide inappropriate estimates, such
as 1 − j 1√

2
, 0, and 1√

2
.

5. Performance Analysis

In this section, we give a theoretical performance analysis
for the reconstruction of a discrete-valued sparse vector via
the SOAV optimization. We use RIP considered in the per-
formance analysis for the reconstruction of a sparse vector
via compressed sensing [15].

Definition 1 (K-sparse vector): A vector x ∈ RN is said to
be K-sparse if it has at most K non-zero elements.

Definition 2 (RIP): A matrix Φ satisfies RIP of order K if
there is a constant δK ∈ (0, 1) such that

(1 − δK )‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK )‖x‖22 (31)

holds for all K-sparse vector x. The minimum value of
possible δK is called K-restricted isometry constant.

In this section, we consider the reconstruction of a
discrete-valued sparse vector e ∈ BN = {b0, b1, . . . , bL }

N

(b0 = 0) from its linear measurements y ′ = He + v. The
SOAV optimization problem for the reconstruction is given
by

minimize
x∈RN

1
σ2
ṽ

‖y ′ − Hx‖22 +
N∑
j=1

L∑
`=0

q`, j |x j − b` |,

(32)

which is a generalization of (28). The optimization problem
(32) is equivalent to

minimize
x∈RN

N∑
j=1

L∑
`=0

q`, j |x j − b` |

subject to ‖y ′ − Hx‖2 ≤ ε (33)

with a proper choice of the constant ε > 0 corresponding to
σ2
ṽ . For the solution of (33), we have the following theorem:

Theorem 1: Let eest be the solution of (33). Assume that
the true vector e is K-sparse and satisfies the constraint in
(33), i.e., ‖y ′ − He‖2 ≤ ε. We define δ2K as the 2K-
restricted isometry constant of H , J̀ = { j | e j = b` },
Q j =

∑L
`=0 q`, j and Qmin = minj∈J0 Q j . If the inequality

δ2K <
1

√
2c + 1

(34)

holds, then we have

‖eest − e‖2 ≤
1

1 − cρ

{
(1 + c)τε +

2
√

K
(1 + ρ)I

}
,

(35)

where

τ =
2
√

1 + δ2K
1 − δ2K

, ρ =

√
2δ2K

1 − δ2K
, I =

∑
j∈J0

L∑
`=1

q`, j
Qmin

|b` |,

c =

√∑L
`=1

∑
j∈J̀ r2

`, j

K
, r`, j = max

`

(
Q j − q`, j

Qmin
, 0

)
.

(36)

Proof. See Appendix B.

Theorem 1 can be considered as a generalization of the per-
formance analysis for the reconstruction of K-sparse vec-
tor via `1 optimization [15]. Actually, if q0, j = 1 and
q`, j = 0 (` = 1, . . . , L) for all j, then (33) is written as
the `1 optimization problem

minimize
x∈RN

N∑
j=1
|x j | subject to ‖y ′ − Hx‖2 ≤ ε. (37)

Since c = 1 and I = 0 in this case, the condition (34) and the
upper bound (35) can be written as

δ2K <
1

√
2 + 1

=
√

2 − 1, (38)

‖eest − e‖2 ≤
2

1 − ρ
τε, (39)

respectively, which correspond to the result for `1 optimiza-
tion.

The condition (34) can be milder than (38) for an ap-
propriate choice of q`, j . Since e is K-sparse, we have∑L
`=1 |J̀ | ≤ K . Thus, in the case of Q j = 1 ( j = 1, . . . , N ),

for example, c ≤ 1 follows from r`, j = max(1− q`, j, 0) ≤ 1.
If q`, j > 0 for some ` ≥ 1 and j ∈ J̀ , then we have r`, j < 1
and c < 1. In this case, the condition (34) is milder than (38)
because 1/(

√
2c + 1) >

√
2 − 1. Also the upper bound (35)

for c < 1 is smaller than (39) because it is the monotonically
increasing function of c.

Unfortunately, it is difficult in general to obtain the re-
stricted isometry constant δK for a specificmatrix because of
the infeasible computational complexity. For random matri-
ces, however, some asymptotical results about RIP have been
obtained [16] and hence they might be used with Theorem
1 for very large MIMO systems. Moreover, Theorem 1 may
provide different criterion for calculating the coefficients q`, j
from the method described in Section 4.

6. Simulation Results

In this section, we evaluate the bit error rate (BER) per-
formance of the proposed method and the conventional
method [6] via computer simulations. In the simulations,
flat Rayleigh fading channels are assumed and H̃ is com-
posed of i.i.d. complex Gaussian random variables with zero
mean and unit variance. We transmit 100 symbol vectors for
each realization of H̃ , and obtain the average BER over the
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Fig. 1 BER performance for (n,m) = (32, 32).

Fig. 2 BER performance for (n,m) = (128, 128).

transmission of 6.4×106 symbols. Themodulation scheme is
QPSK. For the MMP algorithm in the conventional method,
the number of iterations, the number of paths from each
candidate in each iteration, and the maximum number of
candidates in each iteration are set to KMMP = d0.15ne,
LMMP = 2, NMMP = 5, respectively. In the proposed re-
laxation for the MAP estimation, C̃j = 1 ( j = 1, . . . , 2n) is
used. The parameters of the Douglas-Rachford algorithm
[14] to solve (28) are set to be the same as in [10].

Figures 1 and 2 show the BER performance for the
MIMO systems with (n,m) = (32, 32), (128, 128), respec-
tively. “MMSE”, “Conventional”, and “Proposed” denote
linear MMSE detection, conventional error recovery method
viaMMP, and the proposed error recoverymethod via SOAV
optimization, respectively. For comparison, we also show
the theoretical BER curve for the additive white Gaussian
noise (AWGN) channel as “AWGN (n = m = 1)”. In both
error recovery methods, the estimate of MMSE detection is
used as the initial estimate. As described in Algorithm 1,
T indicates the number of iterations of the error recovery in
the proposed method. The figures show that the proposed
method outperforms the conventional method even when
T = 1. It is because the proposed method uses the discrete-

Fig. 3 BER performance for (n,m) = (32, 24).

Fig. 4 BER performance for (n,m) = (128, 96).

ness of the error vector and the initial soft decision, which
are not considered in the conventional method. We can also
see that the performance is further improved by iterating
the error recovery. One of major possible reasons for the
performance difference between Figs. 1 and 2 is the channel
hardening effect [18], which means that the off-diagonal ele-
ments of H̃HH̃ become negligible compared to the diagonal
elements as the number of antennas increases.

Figures 3 and 4 show the performance for (n,m) =
(32, 24), (128, 96), respectively. Such scenario, where the
number of receive antennas is less than that of transmitted
streams, is called overloaded (or underdetermined) MIMO
[19]. Since the performance of MMSE detection is severely
degraded in overloaded MIMO, the conventional method
also has a poor performance. However, the proposed method
performs well in this case as well, especially in large-scale
systems. The difference of the performance between Figs. 3
and 4 may be partly caused by the accuracy of the Gaussian
approximation in the calculation of the posterior LLRs.

To compare the computational complexity, we evaluate
the average computation time to detect a transmitted sig-
nal vector and the corresponding BER performance versus
n (= m) for the SNR per receive antenna of 12.5 dB in
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Fig. 5 BER performance and average computation time versus n (= m)
for SNR per receive antenna of 12.5 dB.

Fig. 5. The simulation is conducted by using a computer
with 2GHz Intel Core i7-3667U and 8GB memory. We
can see that the proposed error recovery method can achieve
better BER performance with lower complexity compared to
the conventional method.

7. Conclusion

In this paper, we have proposed the error recovery method
for massive MIMO signal detection. The proposed method
estimates the error vector via the SOAV optimization, which
can take advantage of both the sparsity and the discreteness
of the error vector. We have provided the theoretical perfor-
mance analysis for the reconstruction of the discrete-valued
sparse vector via the SOAV optimization. Simulation results
show that the proposedmethod outperforms the conventional
error recovery method. Future work includes the extension
of the proposed method for other modulation methods as
well as the direct reconstruction of complex signals.
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*.
,
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`∈L j \{k }

log p`, j
+/
-
+ Cj =
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`∈L j \{k }

q`, j . (A· 1)

The conditions (A· 1) for all k = `1, . . . , ` |L j | are written as

Θπ + Cj1 |L j |×1 = Θq, (A· 2)
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and q = [q`1, j · · · q`|L j |
, j]T. SinceΘ−1 = 1 |L j |× |L j |/(|L j | −

1) − I , we have

q = π + CjΘ
−11 |L j |×1 (A· 3)

= π +
Cj

|L j | − 1
1 |L j |×1. (A· 4)

Appendix B: Proof of Theorem 1

Let ξ = [ξ1 · · · ξN ]T = eest − e. We define T1 as the
set of indices corresponding to K largest elements in ξJ0 .
Similarly, T2 indicates the set of indices corresponding to
K largest elements in ξ(J c

0 ∪T1)c , and T3 indicates that for
ξ(J c

0 ∪T1∪T2)c . We also define T4,T5, . . . in the same manner.
Note that the vectors ξJ c

0
, ξT1, ξT2, . . . are all K-sparse, the

sets J c
0 ,T1,T2, . . . are disjoint, and J0 =

⋃
u≥1 Tu . ‖ξ ‖2 is

upper bounded as

‖ξ ‖2 ≤ ‖ξJ c
0 ∪T1
‖2 +

∑
u≥2
‖ξTu ‖2. (A· 5)

First, we evaluate ‖ξJ c
0 ∪T1
‖2. Since ξJ c

0 ∪T1
is 2K-

sparse, we obtain

(1 − δ2K )‖ξJ c
0 ∪T1
‖22

≤ ‖HξJ c
0 ∪T1
‖22 (A· 6)

=
〈
HξJ c

0 ∪T1
,Hξ

〉
−

〈
HξJ c

0 ∪T1
,
∑
u≥2

HξTu

〉
(A· 7)

≤
���
〈
HξJ c

0 ∪T1
,Hξ

〉��� +
������

〈
HξJ c

0 ∪T1
,
∑
u≥2

HξTu

〉������
. (A· 8)

The first term in (A· 8) is bounded as
���
〈
HξJ c

0 ∪T1
,Hξ

〉��� ≤ ‖HξJ c
0 ∪T1
‖2‖Hξ ‖2. (A· 9)

From the inequalities of

‖HξJ c
0 ∪T1
‖22 ≤ (1 + δ2K )‖ξJ c

0 ∪T1
‖22 (A· 10)

and

‖Hξ ‖2 = ‖H (eest − e)‖2 (A· 11)
≤ ‖Heest − y

′‖2 + ‖He − y ′‖2 (A· 12)
≤ 2ε, (A· 13)

we have
���
〈
HξJ c

0 ∪T1
,Hξ

〉��� ≤ 2ε
√

1 + δ2K ‖ξJ c
0 ∪T1
‖2. (A· 14)

The second term in (A· 8) is bounded as
������

〈
HξJ c

0 ∪T1
,
∑
u≥2

HξTu

〉������
≤

∑
u≥2

(���
〈
HξJ c

0
,HξTu

〉��� +
��
〈
HξT1,HξTu

〉��
)

(A· 15)

≤
∑
u≥2

(
δ2K ‖ξJ c

0
‖2‖ξTu ‖2 + δ2K ‖ξT1 ‖2‖ξTu ‖2

)
(A· 16)

= δ2K
(
‖ξJ c

0
‖2 + ‖ξT1 ‖2

) ∑
u≥2
‖ξTu ‖2 (A· 17)

≤
√

2δ2K ‖ξJ c
0 ∪T1
‖2

∑
u≥2
‖ξTu ‖2. (A· 18)

From (A· 8), (A· 14), and (A· 18), we have

(1 − δ2K )‖ξJ c
0 ∪T1
‖22

≤ 2ε
√

1 + δ2K ‖ξJ c
0 ∪T1
‖2

+
√

2δ2K ‖ξJ c
0 ∪T1
‖2

∑
u≥2
‖ξTu ‖2. (A· 19)

Dividing both sides with (1 − δ2K )‖ξJ c
0 ∪T1
‖2, we obtain

‖ξJ c
0 ∪T1
‖2 ≤ τε + ρ

∑
u≥2
‖ξTu ‖2, (A· 20)

where τ and ρ are defined in (36).
Next, we evaluate

∑
u≥2 ‖ξTu ‖2, which appears in (A· 5)

and (A· 20). For u ≥ 2, we have

‖ξTu ‖2 ≤
√

K ‖ξTu ‖∞ ≤
1
√

K
‖ξTu−1 ‖1, (A· 21)

and thus∑
u≥2
‖ξTu ‖2 ≤

1
√

K

∑
u≥1
‖ξTu ‖1 =

1
√

K
‖ξJ0 ‖1. (A· 22)

Then, we evaluate ‖ξJ0 ‖1 by using the fact that eest = e + ξ
is the solution of the optimization problem (33). Since eest =
e + ξ is the minimizer of the objective function, we have

2n∑
j=1

L∑
`=0

q`, j |e j − b` |

≥

2n∑
j=1

L∑
`=0

q`, j |e j + ξ j − b` | (A· 23)

=
∑
j∈J c

0

L∑
`=0

q`, j |e j + ξ j − b` |+
∑
j∈J0

L∑
`=0

q`, j |e j + ξ j − b` |

(A· 24)

≥
∑
j∈J c

0

L∑
`=0

q`, j |e j + ξ j − b` |

+
∑
j∈J0

L∑
`=0

q`, j (|ξ j | − |e j − b` |) (A· 25)

=
∑
j∈J c

0

L∑
`=0

q`, j |e j + ξ j − b` |

+
∑
j∈J0

*
,
Q j |ξ j | −

L∑
`=0

q`, j |e j − b` |+
-
, (A· 26)

which gives
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∑
j∈J0

Q j |ξ j | ≤
∑
j∈J c

0

L∑
`=0

q`, j (|e j − b` | − |e j + ξ j − b` |)

+ 2
∑
j∈J0

L∑
`=0

q`, j |e j − b` |. (A· 27)

The first term in (A· 27) can be bounded as

∑
j∈J c

0

L∑
`=0

q`, j (|e j − b` | − |e j + ξ j − b` |)

=

L∑
k=1

∑
j∈Jk

L∑
`=0

q`, j (|e j − b` | − |e j + ξ j − b` |) (A· 28)

=

L∑
k=1

∑
j∈Jk

L∑
`=0

q`, j (|bk − b` | − |bk + ξ j − b` |) (A· 29)

=

L∑
k=1

∑
j∈Jk



−qk, j |ξ j | +

∑
`,k

q`, j ( |bk − b` | − |bk + ξ j − b` |)



(A· 30)

≤

L∑
k=1

∑
j∈Jk

*
,
−qk, j |ξ j | +

∑
`,k

q`, j |ξ j |+
-

(A· 31)

=

L∑
k=1

∑
j∈Jk

(
Q j − 2qk, j

)
|ξ j |. (A· 32)

Since e j = 0 for j ∈ J0, the second term in (A· 27) is written
as

2
∑
j∈J0

L∑
`=0

q`, j |e j − b` | = 2
∑
j∈J0

L∑
`=0

q`, j |b` |. (A· 33)

From (A· 27), (A· 32), (A· 33), and Qmin ≤ Q j ( j ∈ J0), we
obtain

‖ξJ0 ‖1 ≤
1

Qmin

∑
j∈J0

Q j |ξ j | (A· 34)

≤

L∑
k=1

∑
j∈Jk

Q j − 2qk, j
Qmin

|ξ j | + 2
∑
j∈J0

L∑
`=0

q`, j
Qmin

|b` |.

(A· 35)

By using the Cauchy-Schwarz inequality, we have

L∑
k=1

∑
j∈Jk

Q j − 2qk, j
Qmin

|ξ j | ≤

√√√ L∑
k=1

∑
j∈Jk

r2
k, j
‖ξJ c

0
‖2

(A· 36)

= c
√

K ‖ξJ c
0
‖2, (A· 37)

where rk, j and c are defined in (36). From (A· 35) and
(A· 37), ‖ξJ0 ‖1 is bounded as

‖ξJ0 ‖1 ≤ c
√

K ‖ξJ c
0
‖2 + 2I, (A· 38)

where I is defined in (36). Substituting (A· 38) into (A· 22)
gives∑

u≥2
‖ξTu ‖2 ≤ c‖ξJ c

0
‖2 +

2
√

K
I (A· 39)

≤ c‖ξJ c
0 ∪T1
‖2 +

2
√

K
I . (A· 40)

From (A· 20) and (A· 40), we have

‖ξJ c
0 ∪T1
‖2 ≤ τε + cρ‖ξJ c

0 ∪T1
‖2 +

2
√

K
ρI . (A· 41)

If 1 − cρ > 0, i.e., δ2K < 1/(
√

2c + 1), then (A· 41) can be
written as

‖ξJ c
0 ∪T1
‖2 ≤

1
1 − cρ

(
τε +

2
√

K
ρI

)
, (A· 42)

and hence we obtain∑
u≥2
‖ξTu ‖2 ≤

c
1 − cρ

(
τε +

2
√

K
ρI

)
+

2
√

K
I (A· 43)

≤
1

1 − cρ

(
cτε +

2
√

K
I
)

(A· 44)

from (A· 40). We conclude from (A· 5), (A· 42), and (A· 44)
that

‖ξ ‖2 ≤
1

1 − cρ

{
(1 + c)τε +

2
√

K
(1 + ρ)I

}
. (A· 45)
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