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Convex Optimization Based Signal Detection
for Massive Overloaded MIMO Systems
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Abstract—This paper proposes signal detection schemes for
massive multiple-input multiple-output (MIMO) systems, where
the number of receive antennas is less than that of transmitted
streams. Assuming practical baseband digital modulation, and
taking advantage of the discreteness of transmitted symbols, we
formulate the signal detection problem as a convex optimiza-
tion problem, called sum-of-absolute-value (SOAV) optimization.
Moreover, we extend the SOAV optimization into the weighted-
SOAV (W-SOAV) optimization and propose an iterative approach
to solve the W-SOAV optimization with updating the weights in
the objective function. Furthermore, for coded MIMO systems,
we also propose a joint detection and decoding scheme, where
log likelihood ratios (LLRs) of transmitted symbols are iteratively
updated between the MIMO detector and the channel decoder. In
addition, a theoretical performance analysis is provided in terms
of the upper bound of the size of the estimation error obtained
with the W-SOAV optimization. Simulation results show that the
bit error rate (BER) performance of the proposed scheme is
better than that of conventional schemes, especially in large-scale
overloaded MIMO systems.

Index Terms—massive MIMO, overloaded MIMO, sum-of-
absolute-value optimization, proximal splitting methods, re-
stricted isometry property.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) communi-
cations use multiple antennas at both transmitter and

receiver to achieve high spectral efficiency. As the required
data rate and throughput have been significantly increasing,
massive MIMO using tens or hundreds of antennas are gath-
ering attention as one of key technologies in the 5th generation
(5G) mobile communications systems [1], [2]. Since the
computational complexity of MIMO signal detection generally
increases along with the number of antennas, low-complexity
signal detection schemes will be required for massive MIMO
systems. Possible candidates might be linear signal detection
schemes, such as the zero forcing (ZF) and the minimum
mean-square-error (MMSE) detection methods, however, the
performance of linear detectors is considerably poor compared
to that of optimal maximum likelihood (ML) detection, and
thus some non-linear detection schemes have been investigated
to achieve better performance with reasonable computational
complexity. The likelihood ascent search (LAS) [3], [4] and
the reactive tabu search (RTS) [5], [6] are based on the local
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neighborhood search of likelihood. The graph-based iterative
Gaussian detector (GIGD) [7] is known as a low complexity
scheme built upon belief propagation (BP). With the turbo
principle as used in turbo-Bell Laboratories layered space time
(BLAST) [8], the BP-based detection can be jointly performed
with the decoding of channel codes such as low density parity
check (LDPC) code [9], [10], [11]. It has been shown that
this joint approach has better performance compared to the
individual detection and decoding [12].

In some MIMO systems, sufficient number of receive an-
tennas may not be available due to the limited size, weight,
cost and/or power consumption of the receiver. Such MIMO
systems, where the number of receive antennas is less than that
of transmitted streams, are known as overloaded (or underde-
termined) MIMO systems. As one of signal detection schemes
for overloaded MIMO systems, the slab-sphere decoding
(SSD) [13] based on ML detection has been proposed by
extending the idea of sphere decoding [14]. On the other hand,
pre-voting cancellation (PVC) [15] technique divides the fat
channel matrix into a square matrix and the remaining matrix,
and, for all possible candidates of the signals corresponding
to the remaining matrix, signals corresponding to the square
matrix are exhaustively estimated by using a conventional
signal detection scheme for non-overloaded MIMO systems,
and the one having best likelihood is selected as the final
estimate of the transmitted signals. Moreover, to reduce the
computational complexity, the integration of SSD and PVC has
been considered in [16], [17]. For massive overloaded MIMO
systems, however, these schemes are not feasible because
their complexities are still too high. In addition, most of
low-complexity detection schemes for non-overloaded massive
MIMO systems, including LAS, RTS, and GIGD1, have very
poor performance in overloaded scenarios. While the signal
detection scheme for massive overloaded MIMO has been
hardly discussed in the literature, one of a few exceptions is
the enhanced reactive tabu search (ERTS) proposed in [18].
ERTS is an extension of RTS and employs RTS iteratively
while randomly varying the initial point of the search until
a certain condition is satisfied. It is shown in [18] that
ERTS can achieve comparable performance to the optimal
ML detection with affordable computational complexity for
overloaded MIMO systems with around 30 transmit antennas.
If the number of antennas further increases, however, ERTS
requires prohibitive computational complexity to achieve such
performance because the required number of RTSs signifi-

1GIGD works well for overloaded MIMO systems where the difference
between the number of transmitted streams and receive antennas is small.
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cantly increases. Other exceptions will be the !1 minimization-
based method [19] and the quadratic programming-based
method [20] for massive overloaded MIMO systems, and the
quadratic programming-based method has been shown to have
better performance than the !1 minimization-based method.

In this paper, based on the preliminary conference pa-
per [21], we propose a low-complexity signal detection scheme
for massive overloaded MIMO systems, which employs the
fact that transmitted symbols in practical digital communica-
tions are discrete-valued. Using the discreteness and the idea
of the sum-of-absolute-value (SOAV) optimization [22], [23],
we formulate the signal detection problem as a convex op-
timization problem. The optimization problem can be effi-
ciently solved with proximal splitting methods [24] even for
underdetermined systems. Moreover, we extend the SOAV
optimization to the weighted-SOAV (W-SOAV) optimization,
where the prior information on transmitted symbols can be
used, and propose an iterative approach, referred to as iter-
ative weighted-SOAV (IW-SOAV). IW-SOAV calculates log
likelihood ratios (LLRs) of transmitted symbols by using
the estimate in the previous iteration, and utilizes them as
the prior information. IW-SOAV can detect the transmitted
signals with low computational complexity because the W-
SOAV optimization problem can also be efficiently solved with
proximal splitting methods. Furthermore, for coded MIMO
systems, we propose a joint MIMO signal detection and
channel decoding scheme, where LLRs of transmitted symbols
are iteratively updated between the W-SOAV detector and the
channel decoder. In addition, we analytically evaluate the error
of the W-SOAV optimization by using the restricted isometry
property (RIP) [25]. We derive an upper bound for the size
of the error vector between the true transmitted vector and
its estimate obtained with the W-SOAV optimization. Our
analysis also provides a sufficient condition for the exact
reconstruction with the W-SOAV optimization in the noise-free
case. Simulation results show that IW-SOAV has better bit er-
ror rate (BER) performance than conventional signal detection
schemes in large-scale overloaded MIMO systems. For LDPC
coded MIMO systems, the joint detection and decoding can
achieve much better performance than the individual detection
and decoding.

Major differences against the conference version [21] in-
clude the joint processing of the overloaded massive MIMO
signal detection and channel decoding, where improved
weights in the W-SOAV optimization are newly introduced
by using the LLRs of the transmitted symbols as the prior
information. Furthermore, the theoretical performance analysis
of the W-SOAV optimization based on the RIP is also newly
added contribution in this paper.

The rest of the paper is organized as follows: In Section II,
we introduce the system model of the overloaded MIMO
system without channel coding and propose a signal detec-
tion scheme named IW-SOAV. We consider the coded case
and explain the integrated scheme with IW-SOAV and the
channel decoding in Section III. In Section IV, the theoretical
performance analysis of the W-SOAV optimization by using
RIP is provided. Section V gives some simulation results to
demonstrate the performance of the proposed scheme. Finally,

Section VI presents some conclusions.
In the rest of the paper, we use the following notations:

We denote the set of all real numbers by R and the set of all
complex numbers by C. Re{·} and Im{·} indicate the real part
and the imaginary part, respectively. Superscripts (·)T and (·)H
denote the transpose and the Hermitian transpose, respectively.
We represent the imaginary unit by j, the identity matrix by
I , a vector whose elements are all 1 by 1, and a vector whose
elements are all 0 by 0. For a vector a = [a1 · · · aN ]T ∈ RN ,
we define the !1, !2, and !∞ norms of a as ‖a‖1 =

∑N
i=1 |ai|,

‖a‖2 =
√∑N

i=1 a
2
i , and ‖a‖∞ = maxi∈{1,...,N} |ai|, respec-

tively. For an index set I ⊂ {1, . . . , N}, aI ∈ RN is defined
by

[aI ]i =

{
ai (i ∈ I)
0 (i /∈ I)

, (1)

where [·]i denotes the ith element of the vector. |I| and
Ic = {1, . . . , N} \ I represent the cardinality of I and the
complement set of I, respectively. We denote the Euclidean
inner product by 〈·, ·〉 and the sign function by sgn(·).

II. PROPOSED SIGNAL DETECTION SCHEME FOR
OVERLOADED MIMO WITHOUT CHANNEL CODING

A. System model

We consider a MIMO system with n transmit antennas and
m (< n) receive antennas. For simplicity, precoding is not
considered and the number of transmitted streams is assumed
to be equal to that of transmit antennas. The transmitted signal
vector s̃ = [s̃1 · · · s̃n]T ∈ S̃n is composed of symbols trans-
mitted from the n transmit antennas, where s̃j (j = 1, . . . , n)
denotes the symbol sent from the jth transmit antenna and
S̃ is the set of symbol alphabets. The received signal vector
ỹ = [ỹ1 · · · ỹm]T ∈ Cm, where ỹi (i = 1, . . . ,m) denotes the
signal received at the ith receive antenna, is given by

ỹ = H̃s̃+ ṽ, (2)

where

H̃ =




h̃1,1 · · · h̃1,n

...
. . .

...
h̃m,1 · · · h̃m,n



 ∈ Cm×n (3)

is a flat fading channel matrix and h̃i,j represents the channel
gain from the jth transmit antenna to the ith receive antenna.
ṽ ∈ Cm is the circular complex Gaussian noise vector with
zero mean and the covariance matrix of σ2

ṽI . The complex
signal model (2) can be rewritten by the real signal model as

y = Hs+ v, (4)

where

y =

[
Re{ỹ}
Im{ỹ}

]
, H =

[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
,

s =

[
Re{s̃}
Im{s̃}

]
, v =

[
Re{ṽ}
Im{ṽ}

]
. (5)
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B. SOAV optimization
The SOAV optimization [22], [23] is a technique to recon-

struct an unknown discrete-valued vector x = [x1 · · · xN ]T ∈
{c1, . . . , cB}N ⊂ RN from its possibly underdetermined lin-
ear measurements η = Ax, where A ∈ RM×N . If we assume
Pr(xj = cb) = 1/B (b = 1, . . . , B) for all xj (j = 1, . . . , N),
each of x − c11, . . . ,x − cB1 has approximately N/B zero
elements. Based on this property and the idea of the !1
optimization in compressed sensing [26], [27], the SOAV
optimization solves

minimize
u∈RN

1

B

B∑

b=1

‖u− cb1‖1 subject to η = Au (6)

in order to reconstruct x from η and A.

C. Signal detection via SOAV optimization
In digital MIMO communications systems, the transmitted

signal vector s is commonly discrete-valued and the received
signal vector y can be regarded as its linear observations if the
noise can be ignored. For simplicity, if we employ quadrature
phase shift keying (QPSK), then S̃ = {1 + j,−1 + j,−1 −
j, 1− j}, E[s̃] = 0, and E[s̃s̃H] = 2I . Since each element of s
is 1 or −1 for this case, we can formulate the signal detection
problem as the SOAV optimization, i.e.,

minimize
z∈R2n

(
1

2
‖z − 1‖1 +

1

2
‖z + 1‖1

)

subject to y = Hz. (7)

Since the received signal vector y contains the additive noise
as in (4), we modify the optimization problem as

ŝ = argmin
z∈R2n

(
1

2
‖z − 1‖1 +

1

2
‖z + 1‖1

+
α

2
‖y −Hz‖22

)
, (8)

by using the idea of the !1-!2 optimization [27]. Here, the
constant α > 0 is the parameter to control the balance between
the terms 1

2‖z − 1‖1 + 1
2‖z + 1‖1 and 1

2‖y −Hz‖22. If α is
large, the effect of 1

2‖y −Hz‖22 will be dominant compared
to that of 1

2‖z−1‖1+ 1
2‖z+1‖1, and vice versa. In general,

the optimal value of α is unknown in advance. For a fixed
α > 0, the solution of (8) can be obtained with the following
theorem [24].
Theorem 1. Let φ1,φ2 : RN → (−∞,∞] be lower semicon-
tinuous convex functions and (ri dom φ1)∩(ri dom φ2) *= ∅,
where ri and dom denote the relative interior of the set
and the domain of the function, respectively. In addition,
φ1(z) + φ2(z) → ∞ as ‖z‖2 → ∞ is assumed. A sequence
{zk} (k = 0, 1, . . .) converging to the solution of

minimize
z∈RN

(φ1(z) + φ2(z)) (9)

can be obtained by using the following Douglas-Rachford
algorithm.
Algorithm 1. (Douglas-Rachford algorithm)

1) Fix ε ∈ (0, 1), γ > 0, and r0 ∈ RN .

2) For k = 0, 1, 2, . . ., iterate





zk = proxγφ1
(rk)

θk ∈ [ε, 2− ε]

rk+1 = rk + θk(proxγφ2
(2zk − rk)− zk).

The Douglas-Rachford algorithm is one of the proximal
splitting methods [24], which can solve the optimization
problem with the form of (9) by using the proximity operator.
For a lower semicontinuous convex function φ : RN → R, the
proximity operator is defined as

proxφ(z) = argmin
u∈RN

(
φ(u) +

1

2
‖z − u‖22

)
, (10)

which is an extension of the projection onto nonempty closed
convex sets for the convex function. In fact, for the indicator
function ιC(z) (ιC(z) = 0 if z ∈ C, and ιC(z) = ∞ other-
wise) with such a convex set C, proxιC (z) is the projection
of z onto C. Although the choice of the parameters ε, γ, r0,
and θk may affect the convergence speed of the algorithm, the
limit of the sequence {zk} is identical theoretically for any
possible values of the parameters.

In order to apply the theorem to our problem, we rewrite (8)
as

minimize
z∈R2n

(f(z) + g(z)) , (11)

where f(z) = ‖z − 1‖1/2 + ‖z + 1‖1/2 and g(z) = α‖y −
Hz‖22/2. Note that f(z) and g(z) are lower semicontinuous
convex functions due to the continuity and the convexity of !1
and !2 norms. Moreover, we have (ri dom f)∩ (ri dom g) =
(ri R2n) ∩ (ri R2n) = R2n *= ∅ and f(z) + g(z) → ∞ as
‖z‖22→ ∞. Thus, we can calculate the solution of (8) or (11)
by using Algorithm 1 with φ1(z) = f(z) and φ2(z) = g(z).
The proximity operators of γf(z) and γg(z) can be obtained
as

[proxγf (z)]j =






zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1)

zj (−1 ≤ zj ≤ 1)

1 (1 ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

, (12)

and

proxγg(z) = (I + αγHTH)−1(z + αγHTy), (13)

respectively, where zj indicates the jth element of z. Note
that [proxγf (z)]j is a function, which depends only on zj ,
as shown in Fig. 1. By solving (8) via the Douglas-Rachford
algorithm with proxγf and proxγg , the estimate of the trans-
mitted signal vector s can be obtained.

The computational complexity of the algorithm is O(n3),
which is dominated by the matrix inversion (I+αγHTH)−1

in (13). Note that the calculation of the inversion is required
only once, and thus the corresponding computational cost does
not grow with the number of iterations in the algorithm. If the
ratio m/n is fixed, the computational complexity is the same
order as that of linear MMSE detection for the overloaded
scenario.
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zj

[proxγf (z)]j

0 1 1 + γ

1

−1

−1−1− γ

Fig. 1. [proxγf (z)]j

D. LLR calculation

Although the estimate ŝ can be obtained with the SOAV
optimization, we consider to further improve the performance
of the proposed scheme by extending the SOAV optimization
into the W-SOAV optimization. For the preparation of the
extension, we here consider to approximate the posterior LLR
of sj defined as

Λj := log
p(sj = +1 | y)
p(sj = −1 | y) (14)

= log
p(y | sj = +1)

p(y | sj = −1)
, (15)

by using the current estimate ŝ. To reduce the computational
complexity, we firstly approximate Λj as

Λj ≈ log

2m∏

i=1

p(yi | sj = +1)

2m∏

i=1

p(yi | sj = −1)

(16)

=
2m∑

i=1

log
p(yi | sj = +1)

p(yi | sj = −1)
(17)

by assuming that the observations y1, . . . , y2m are indepen-
dent, which means p(y | sj = +1) =

∏2m
i=1 p(yi | sj = +1)

and p(y | sj = −1) =
∏2m

i=1 p(yi | sj = −1). By using the
similar idea to the Gaussian approximation in the BP-based
detection [7], we rewrite yi as

yi = hi,jsj +
2n∑

k=1
k %=j

hi,ksk + vi = hi,jsj + ξji (18)

where ξji =
∑2n

k=1,k %=j hi,ksk + vi. Since ξji is the sum of
2n− 1 independent random variables and Gaussian noise, we
can approximate it as a Gaussian random variable from the
central limit theorem when n is large. We thus calculate (17)

as
2m∑

i=1

log
p(yi | sj = +1)

p(yi | sj = −1)
≈

2m∑

i=1

2hi,j

(
yi − µξji

)

σ2
ξji

, (19)

where µξji
and σ2

ξji
represent the mean and the variance of ξji ,

respectively, which are given by

µξji
=

2n∑

k=1
k %=j

hi,kE[sk], (20)

σ2
ξji

=
2n∑

k=1
k %=j

h2
i,k

(
1− E[sk]2

)
+

σ2
v

2
. (21)

Since E[sk] is not available in general, we approximate µξji
and σ2

ξji
using the current estimates ŝ1, . . . , ŝ2n as

µξji
≈ µ̂ξji

:=
2n∑

k=1
k %=j

hi,kŝ
′
k, (22)

σ2
ξji

≈ σ̂2
ξji

:=
2n∑

k=1
k %=j

h2
i,k

(
1− ŝ′k

2
)
+

σ2
v

2
, (23)

where

ŝ′j =






−1 (ŝj < −1)

ŝj (−1 ≤ ŝj < 1)

1 (1 ≤ ŝj)

(24)

is bounded in [−1, 1] so that 1 − ŝ′k
2 in (23) is not negative.

From (17), (19), (22) and (23), the posterior LLR of sj can
be approximated as

Λj ≈ Λ̂j :=
2m∑

i=1

2hi,j



yi −
2n∑

k=1
k %=j

hi,kŝ
′
k





2n∑

k=1
k %=j

h2
i,k

(
1− ŝ′k

2
)
+

σ2
v

2

. (25)

Since the computational complexity of (25) is O(mn), the
complexity for the direct calculation of Λ̂1, . . . , Λ̂2n will be
O(mn2). However, we can reduce the complexity to O(mn)
by calculating and storing

µ̂i :=
2n∑

k=1

hi,kŝ
′
k, (26)

σ̂2
i :=

2n∑

k=1

h2
i,k

(
1− ŝ′k

2
)
+

σ2
v

2
, (27)

in advance. Since (26) and (27) can be calculated with the
complexity of O(n), we can obtain all of µ̂i and σ̂2

i (i =
1, . . . , 2m) with O(mn). By using µ̂i and σ̂i, (22) and (23)
are rewritten as

µ̂ξji
= µ̂i − hi,j ŝ

′
j , (28)

σ̂2
ξji

= σ̂2
i − h2

i,j

(
1− ŝ′j

2
)
, (29)
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which can be obtained with O(1). With (26)–(29), (25) can
be rewritten as

Λ̂j =
2m∑

i=1

2hi,j

{
yi −

(
µ̂i − hi,j ŝ′j

)}

σ̂2
i − h2

i,j

(
1− ŝ′j

2
) (30)

and hence the complexity needed for the calculation of each
Λ̂j is reduced to just O(m). As a result, we can obtain
Λ̂1, . . . , Λ̂2n with the complexity of O(mn), while the com-
plexity of the SOAV optimization is O(n3) as described in the
previous section.

E. IW-SOAV
From the approximated posterior LLR Λ̂j , we approximate

the posterior probabilities as Pr(sj = +1 | y) ≈ w+
j and

Pr(sj = −1 | y) ≈ w−
j by using (14), where

w+
j :=

eΛ̂j

1 + eΛ̂j
, w−

j :=
1

1 + eΛ̂j
. (31)

By using the approximated probabilities as the prior informa-
tion, we extend the problem (8) to the W-SOAV optimization
problem as

ŝ = argmin
z∈R2n




2n∑

j=1

(
w+

j |zj − 1| + w−
j |zj + 1|

)

+
α

2
‖y −Hz‖22

)
. (32)

If there is no prior information about s, i.e., w+
j = w−

j =
1/2, the optimization problem (32) is equivalent to (8). If
w+

j > w−
j , then argmin

zj∈R

(
w+

j |zj − 1|+ w−
j |zj + 1|

)
= 1

and hence the solution of zj in (32) tends to take the value
close to 1, and vice versa. The optimization problem (32) can
also be solved by using the Douglas-Rachford algorithm. The
proximity operator of

γfw(z) := γ
2n∑

j=1

(
w+

j |zj − 1|+ w−
j |zj + 1|

)
(33)

can be written as

[proxγfw(z)]j

=






zj + γ (zj < −1− γ)

−1 (−1− γ ≤ zj < −1− djγ)

zj + djγ (−1− djγ ≤ zj < 1− djγ)

1 (1− djγ ≤ zj < 1 + γ)

zj − γ (1 + γ ≤ zj)

, (34)

where dj = w+
j − w−

j . Figure 2 shows an example of
[proxγfw(z)]j for the case with w+

j > w−
j . By solving the

optimization problem (32) via the Douglas-Rachford algorithm
with proxγfw and proxγg , a new estimate of the transmitted
signal vector s can be obtained.

To implement the idea of W-SOAV, we propose an iterative
approach, referred to as IW-SOAV. In each iteration of IW-
SOAV, we use the estimate obtained in the previous iteration
as the prior information. By calculating the weights w+

j and

zj

[proxγfw(z)]j

0 1 + γ

1

−1

−1− γ

1− djγ

−1− djγ

Fig. 2. An example of [proxγfw (z)]j (w+
j > w−

j )

w−
j from the estimate and solving the W-SOAV optimization

problem, we can obtain an improved estimate of s. The
proposed algorithm of IW-SOAV is summarized as follows:
Algorithm 2. (Proposed signal detection via IW-SOAV)

1) Let ŝ = 0 and iterate a)–d) for L times.
a) Calculate Λ̂j with (30).
b) Compute w+

j and w−
j with (31).

c) Fix ε ∈ (0, 1), γ > 0, and r0 ∈ R2n, and set the
number of iterations in the W-SOAV optimization
Kitr.

d) For k = 0, 1, 2, . . . ,Kitr, iterate





zk = proxγfw(rk)

θk ∈ [ε, 2− ε]

rk+1 = rk + θk(proxγg(2zk − rk)− zk)

and let ŝ = zKitr .
2) Obtain sgn(ŝ) as the final estimate of s.
The computational complexity of IW-SOAV is the same

order as that of the Douglas-Rachford algorithm for the SOAV
optimization because it is dominated by the matrix inversion
(I + αγHTH)−1 in (13).

F. Comments for other modulation schemes
Although we assume QPSK modulation throughout this

paper, we can extend our proposed scheme for rectangular
quadratic amplitude modulation (QAM) symbols. For
example, when we use 16-QAM symbols whose real and
imaginary parts take +3, +1, −1, or −3, the corresponding
SOAV optimization problem can be obtained by replacing
1
2‖z − 1‖1 + 1

2‖z + 1‖1 in (8) with f16-QAM(z) =
1
4‖z − 3 · 1‖1 + 1

4‖z − 1‖1 + 1
4‖z + 1‖1 + 1

4‖z + 3 · 1‖1.
The optimization problem for 16-QAM symbols can also be
solved via the Douglas-Rachford algorithm with the proximity
operator of γf16-QAM, which can be obtained by the direct
calculation of the definition. Although the proximity operator
is a bit more complicated than (12), the computational
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complexity to estimate the transmitted signal vector is almost
the same as that for the case with QPSK modulation. We
can also extend the W-SOAV optimization for such case
by using the LLR calculation for 16-QAM symbols [28].
However, for some modulation methods such as 8-phase
shift keying (PSK), we cannot directly apply our proposed
method. When we use 8-PSK symbols with the alphabet{
1, 1√

2
+ j 1√

2
, j,− 1√

2
+ j 1√

2
,−1,− 1√

2
− j 1√

2
,−j, 1√

2
− j 1√

2

}
,

the proposed method may provide inappropriate estimates,
such as 1− j 1√

2
, 0, and 1√

2
.

III. PROPOSED JOINT DETECTION AND DECODING
FOR CODED MIMO SYSTEMS

Since the proposed W-SOAV optimization can use the pos-
terior LLRs of transmitted symbols as the prior information,
we can integrate it with soft channel decoding schemes, e.g.,
LDPC codes or turbo codes. In this section, we propose
a joint detection and decoding scheme using the W-SOAV
optimization for coded massive overloaded MIMO systems.

Figure 3 shows the system model of the coded MIMO with
n transmit antennas and m (< n) receive antennas. In the
transmitter, Q information bits are encoded into P coded bits
by a channel encoder with the code rate R = Q/P . For
simplicity, P is assumed to be a multiple of 2n. P coded bits
are then modulated into P/2 QPSK symbols and sent from n
transmit antennas over T = P/2n symbols time.

The received signal vector at time t ∈ {1, . . . , T} is given
by

ỹ(t) = H̃(t)s̃(t) + ṽ(t), (35)

where H̃(t), s̃(t), and ṽ(t) are the channel matrix, the transmit-
ted signal vector, and the noise vector at time t, respectively.
We can convert (35) into the real signal model

y(t) = H(t)s(t) + v(t) (36)

in the same manner as the transformation from (2) to (4). In
the proposed detection and decoding, we iteratively perform
the detection with the W-SOAV optimization and the channel
decoding to update LLRs of transmitted symbols. The detector
obtains the estimate ŝ(t) of s(t) with the W-SOAV optimization
using the information from the channel decoder except for the
first iteration. Specifically, by using the posterior LLR obtained
at the output of the channel decoder as

λ(t)
j = log

p
(
s(t)j = +1 | y(t)

)

p
(
s(t)j = −1 | y(t)

) , (37)

the weight parameters of the W-SOAV optimization are given
by

w+
j
(t)

=
eλ

(t)
j

1 + eλ
(t)
j

, w−
j

(t)
=

1

1 + eλ
(t)
j

(38)

as in (31). After the detection via the W-SOAV optimization
with the above w+

j
(t) and w−

j
(t), we calculate the posterior

LLRs Λ̂(t) =
[
Λ̂(t)
1 · · · Λ̂(t)

2n

]T
, where Λ̂(t)

j is given by (30).

Using all LLRs Λ̂(1), . . . , Λ̂(T ) as the input, the decoder

performs the soft channel decoding and outputs new posterior
LLRs λ(1), . . . ,λ(T ) to the MIMO detector, where λ(t) =[
λ(t)
1 · · · λ(t)

2n

]T
. After a certain number of the iterations of

the detection and decoding, the decoder outputs the decoded
bits as the final estimate of the transmitted information bits.

IV. PERFORMANCE ANALYSIS

In this section, we give an upper bound of the !2 norm of
the error vector between the true transmitted signal vector and
its estimate obtained by the W-SOAV optimization. Since the
SOAV optimization is partly based on the idea of compressed
sensing as described in Sec. II, we use RIP considered in the
performance analysis for compressed sensing [25].
Definition 1 (K-sparse vector). A vector x ∈ RN is said to
be K-sparse if it has at most K non-zero elements.
Definition 2 (RIP). A matrix Φ satisfies RIP of order K if
there is a constant δK ∈ (0, 1) so that

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22 (39)

holds for all K-sparse vector x. The constant δK is called
K-restricted isometry constant.

The W-SOAV optimization problem (32) is equivalent to

minimize
z∈R2n

2n∑

j=1

(
w+

j |zj − 1|+ w−
j |zj + 1|

)

subject to ‖y −Hz‖2 ≤ ε (40)

for a proper ε ≥ 0 corresponding to α. For the solution of (40)
and the true transmitted signal vector, we have the following
theorem:
Theorem 2. Let ŝ be the solution of (40) and δ2K be the
2K-restricted isometry constant of H . Assume that the true
transmitted signal vector s satisfies the constraint in (40), i.e.,
‖y −Hs‖2 ≤ ε, and define a set of indices W = {j | sj =
1, w+

j < w−
j } ∪ {j | sj = −1, w+

j > w−
j }, where sj *=

argmin
zj∈R

(
w+

j |zj − 1|+ w−
j |zj + 1|

)
. If the inequality

δ2K <
w̄√
2 + w̄

(41)

holds, then we have

‖ŝ− s‖2 ≤ τ(w̄ − ρ)−1(1 + w̄)ε, (42)

where

K = |J |, w̄ = min
j∈J c

|w+
j − w−

j |, (43)

τ =
2
√
1 + δ2K

1− δ2K
, ρ =

√
2δ2K

1− δ2K
, (44)

and J ⊂ {1, . . . , 2n} is a set of indices satisfying J ⊃ W .
Proof: See Appendix A.

The procedure of the proof for this theorem is partly similar
to that in [25] for compressed sensing and our result is a
kind of generalization of that for compressed sensing. The
condition (41) depends on δ2K and w̄, while the corresponding
condition for compressed sensing δ2K <

√
2−1 depends only
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Fig. 3. Model of coded MIMO systems

on δ2K . If w̄ takes its maximum value, i.e., w̄ = 1, then (41)
and (42) are equivalent to the result for compressed sensing.
Indeed, (41) and (42) for w̄ = 1 can be written as

δ2K <
1√
2 + 1

=
√
2− 1, (45)

‖ŝ− s‖2 ≤ 2τ(1− ρ)−1ε, (46)

which correspond to the result for the reconstruction of a
K-sparse vector via the !1 optimization problem. However,
the smaller w̄ is, the severer the condition (41) is because
w̄/(

√
2 + w̄) is the monotonically increasing function of w̄.

Since the upper bound in (42) is the monotonically decreasing
function of w̄, it has a large value for a small w̄.

In the noise-free case, we can set ε = 0, and (42) shows
that the norm of the reconstruction error with the W-SOAV
optimization is upper bounded by 0. Namely, Theorem 2 shows
the sufficient condition for the exact reconstruction with the
W-SOAV optimization in the noise-free case.

One of drawbacks of the performance analysis based on
RIP is that it is difficult in general to calculate the restricted
isometry constant δK for a specific matrix due to the infeasible
computational complexity. For random matrices, however,
some asymptotical results about RIP have been obtained [29]
and hence they might be used with our theorem.

V. SIMULATION RESULTS

In this section, we evaluate the BER performance of the
proposed scheme via computer simulations. The parameters
of the Douglas-Rachford algorithm are set as r0 = 0, ε =
0.1, γ = 1, and θk = 1.9 (k = 0, 1, . . . ,Kitr), which give fast
convergence.

A. Uncoded MIMO system

Figures 4–6 show the BER performance for uncoded MIMO
systems with (n,m) = (50, 32), (100, 64), and (150, 96),
respectively. In the figures, we assume flat Rayleigh fading
channels and set H̃ = H̃i.i.d., which is composed of i.i.d. com-
plex Gaussian random variables with zero mean and unit
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Fig. 4. BER performance for uncoded MIMO with (n,m) = (50, 32)
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Fig. 5. BER performance for uncoded MIMO with (n,m) = (100, 64)

variance. The number of iterations in the Douglas-Rachford
algorithm is fixed to Kitr = 50, which is sufficiently large for
the convergence of the algorithm. The parameter α in (32)
is selected as shown in TABLE I, which is determined from
simulation results. Note that the ratio m/n = 0.64 is identical
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Fig. 6. BER performance for uncoded MIMO with (n,m) = (150, 96)

TABLE I
THE VALUE OF α IN (32)

SNR per receive antenna (dB) 0–10 12.5–20 22.5 25–30
α 0.01 0.1 0.3 1

for all the figures. We denote the linear MMSE detection
by “MMSE”, the BP-based detection [7] by “GIGD”, the
detection with a quadratic programming [20] by “Quad-min”,
and the massive overloaded MIMO signal detection proposed
in [18] by “ERTS”. For the implementation of “Quad-min”, we
use the CVX toolbox [30] for MATLAB. The parameters of
ERTS are the same as those in [18], e.g., the maximum number
of RTSs is NRTS = 500 and the maximum number of iterations
in RTS is Nitr = 300. “IW-SOAV” denotes the proposed
scheme shown in Algorithm 2 and L is the number of iterative
W-SOAV optimizations in IW-SOAV. In Fig. 4, where n = 50,
the performance of IW-SOAV is inferior to that of ERTS. In
Fig. 5 with n = 100, however, the performance of ERTS has
degraded and IW-SOAV has better performance in high SNR.
In Fig. 6 for further large-scale MIMO, IW-SOAV outperforms
the other schemes. The reason for the performance degradation
of ERTS is that, if the number of transmit antennas is large,
RTS often fails to find the true transmitted signal vector due
to the huge number of candidates of the transmitted vector.
Although we may get better performance with ERTS by
increasing the number of RTSs, the computational complexity
could be prohibitive to achieve comparable performance as
IW-SOAV. Specifically, the computational complexity of ERTS
is given by O(n3) +O(NRTSn2) in the worst case, and since
the number of all candidates of the transmit signal vector
increases exponentially with the number of transmit antennas,
the required NRTS to keep good performance will increase
more rapidly than n. On the other hand, the computational
complexity of IW-SOAV is O(n3) as described in Sec. II. To
compare the complexity, we evaluate the average computation
time to detect a transmitted symbol vector versus n and the
corresponding BER performance for the fixed ratio m/n =
2/3 and the SNR per receive antenna of 17.5 dB in Figs. 7
and 8, respectively. The simulation is conducted by using a
computer with 2 GHz Intel Core i7-3667U and 8 GB memory.
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Fig. 7. Average computation time versus n for uncoded MIMO with m/n =
2/3 and the SNR per receive antenna of 17.5 dB
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Fig. 8. BER performance versus n for uncoded MIMO with m/n = 2/3
and the SNR per receive antenna of 17.5 dB

In the figures, “PVC” represents the signal detection scheme
proposed in [15], which is intended for small-scale overloaded
MIMO systems. Although PVC can achieve a comparable
BER performance to ML detection for small-scale MIMO
systems, its average computation time rapidly increases along
with n. In Fig. 8, the BER performance of ERTS severely
degrades for large n. This is because the maximum number
of RTSs is limited as NRTS = 500 to avoid the prohibitive
computational complexity, while the number of candidates
of the transmitted signal vector exponentially increases along
with n. Compared to the conventional detection schemes, the
proposed IW-SOAV can achieve better BER performance with
lower complexity in large-scale overloaded MIMO systems.

Figure 9 shows the BER performance versus the number
of receive antennas m for n = 150 and the SNR per receive
antenna of 20 dB. We can observe that IW-SOAV with L = 5
requires less antennas than other schemes to achieve a certain
BER performance. For BER = 10−4, IW-SOAV can reduce
more than ten receive antennas compared to ERTS.

In Fig. 10, we also show the BER performance for spatially
correlated MIMO channels with (n,m) = (100, 64) and H̃ =
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Fig. 9. BER performance versus m for uncoded MIMO with n = 150 and
the SNR per receive antenna of 20 dB
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Fig. 10. BER performance for spatially correlated MIMO with (n,m) =
(100, 64)

Φ
1
2
R H̃i.i.d.Φ

1
2
T , where positive definite matrices ΦR ∈ Cm×m

and ΦT ∈ Cn×n are called receive and transmit correlation
matrices, respectively [31]. We further assume a linear array
with equally spaced antennas in both the receiver and the
transmitter, and define [ΦR]i,j = J0(|i − j| · 2πdR/λ) and
[ΦT]i,j = J0(|i − j| · 2πdT/λ), where [ΦR]i,j and [ΦT]i,j
denote the (i, j) element of ΦR and ΦT, respectively. Here,
J0(·) represents the zeroth-order Bessel function of the first
kind and λ denotes the wavelength. dR and dT are the antenna
spacing at the receiver and the transmitter, respectively, and we
set to dR = dT = 0.5λ in the simulations. From Fig. 10, we can
see that the proposed scheme can achieve better performance
compared to the conventional schemes even in the spatially
correlated MIMO channels, while the performance of GIGD
and ERTS is degraded significantly.

B. LDPC coded MIMO system

Figures 11 and 12 show the BER performance of the
proposed signal detection and decoding for LDPC coded
MIMO with (n,m) = (100, 64). The parameters of the
algorithm are set as Kitr = 30 and α = 0.01. The code
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Fig. 11. BER performance for LDPC coded MIMO with (n,m) =
(100, 64), R = 1/2 and N = 4000
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Fig. 12. BER performance for LDPC coded MIMO with (n,m) =
(100, 64), R = 1/2 and N = 8000

rate is R = 1/2, and the column and row weights of the
parity check matrix are three and six, respectively. In the
figures, the code length are N = 4000 and 8000, respectively.
We represent the proposed joint detection and decoding by
“Joint det./dec.”, where Lmax indicates the maximum number
of iterative W-SOAV optimizations. Even before the Lmaxth
iteration, the LDPC decoder outputs the final estimate of the
information bits if the decoded bits satisfy all parity check
constraints. From the figures, we can see that, as the iteration
proceeds, the performance of the joint detection and decoding
is considerably improved via LLR update between the W-
SOAV optimization and the LDPC decoding. For comparison,
we also plot the performance of the independent detection and
LDPC decoding (“Independent det./dec.”), where IW-SOAV
with L = 5 is used as the detection scheme. Moreover,
“GIGD+LDPC” shows the performance of the joint detection
and decoding with GIGD and LDPC decoding, which are
integrated in the same manner as in Fig. 3. The number of
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outer iterations between the detector and the decoder is set to
5. We can see that the proposed joint detection and decoding
achieves much better performance than the scheme with GIGD
and the independent approach. Each element of the estimate ŝ
obtained by IW-SOAV with L = 5 is almost hard decision, i.e.,
close to 1 or −1, and hence LDPC decoding in the independent
approach has poor performance even compared to the case
with L = 1. The figures also show that the performance is
improved as the code length increases.

VI. CONCLUSION

In this paper, we have proposed the massive overloaded
MIMO signal detection scheme, named IW-SOAV, which
iteratively solves the convex W-SOAV optimization prob-
lem with updating weights in the cost function. For coded
MIMO systems, we have also proposed the joint detection
and decoding using the W-SOAV optimization. The proposed
joint scheme iteratively updates the LLRs of the transmitted
symbols between the detector and the decoder. As the per-
formance analysis of the proposed W-SOAV optimization, we
have evaluated the size of the error vector by using RIP. The
theoretical analysis can be regarded as a generalization of
the results for compressed sensing with the !1 optimization.
Simulation results show that IW-SOAV can achieve much
better performance than conventional schemes, especially in
large-scale overloaded MIMO systems. Even for spatially cor-
related MIMO channels, IW-SOAV outperforms conventional
schemes. Moreover, the average computation time for IW-
SOAV is less than that for other detection schemes intended
for massive overloaded MIMO systems. It is also shown for
LDPC coded massive overloaded MIMO systems that the
proposed joint detection and decoding can achieve better per-
formance compared to the individual detection and decoding.
Future work includes an extension of the proposed scheme
for multiuser MIMO and the evaluation of its system-level
performance.

APPENDIX A
PROOF OF THEOREM 2

Let e = [e1 · · · e2n]T = ŝ − s. T1 denotes the set of the
indices corresponding to the K largest elements in eJ c . Simi-
larly, T2 denotes the set of the indices corresponding to the K
largest elements in e(J∪T1)c . We also define T3, T4, . . . in the
same manner. By definition, the vectors eJ , eT1 , eT2 , . . . are
K-sparse. Since J , T1, T2, . . . are disjoint, ‖e‖2 is bounded
as

‖e‖2 ≤ ‖eJ∪T1‖2 +
∑

u≥2

‖eTu‖2. (47)

We firstly evaluate ‖eJ∪T1‖2. By using the fact that eJ∪T1

is 2K-sparse, we have

(1− δ2K)‖eJ∪T1‖22
≤ ‖HeJ∪T1‖22 (48)

= 〈HeJ∪T1 ,He〉 −
〈
HeJ∪T1 ,

∑

u≥2

HeTu

〉
(49)

≤ |〈HeJ∪T1 ,He〉|+

∣∣∣∣∣∣

〈
HeJ∪T1 ,

∑

u≥2

HeTu

〉∣∣∣∣∣∣
. (50)

The first term in (50) is bounded as

|〈HeJ∪T1 ,He〉| ≤ ‖HeJ∪T1‖2‖He‖2. (51)

Using the inequalities of

‖HeJ∪T1‖22 ≤ (1 + δ2K)‖eJ∪T1‖22 (52)

and

‖He‖2 = ‖H(ŝ− s)‖2 (53)
= ‖(Hŝ− y)− (Hs− y)‖2 (54)
≤ ‖Hŝ− y‖2 + ‖Hs− y‖2 (55)
≤ 2ε, (56)

we obtain

|〈HeJ∪T1 ,He〉| ≤ 2ε
√

1 + δ2K‖eJ∪T1‖2. (57)

The second term in (50) is bounded as
∣∣∣∣∣∣

〈
HeJ∪T1 ,

∑

u≥2

HeTu

〉∣∣∣∣∣∣

≤
∑

u≥2

(|〈HeJ ,HeTu〉|+ |〈HeT1 ,HeTu〉|) (58)

≤
∑

u≥2

(δ2K‖eJ ‖2‖eTu‖2 + δ2K‖eT1‖2‖eTu‖2) (59)

= δ2K (‖eJ ‖2 + ‖eT1‖2)
∑

u≥2

‖eTu‖2 (60)

≤
√
2δ2K‖eJ∪T1‖2

∑

u≥2

‖eTu‖2, (61)

where the following lemma [25] is used for the transformation
from (58) to (59):
Lemma 1. For two vectors z1, z2 ∈ R2n satisfying
|supp(z1)| = K1, |supp(z2)| = K2, and supp(z1) ∩
supp(z2) = ∅, we have

| 〈Hz1,Hz2〉 | ≤ δK1+K2‖z1‖2‖z2‖2, (62)

where supp(·) denotes the set of indices corresponding to
nonzero elements.

From (50), (57), and (61), we have

(1− δ2K)‖eJ∪T1‖22 ≤ 2ε
√
1 + δ2K‖eJ∪T1‖2

+
√
2δ2K‖eJ∪T1‖2

∑

u≥2

‖eTu‖2. (63)
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By dividing both sides with (1 − δ2K)‖eJ∪T1‖2, it follows
from (63) that

‖eJ∪T1‖2 ≤ 2
√
1 + δ2K

1− δ2K
ε+

√
2δ2K

1− δ2K

∑

u≥2

‖eTu‖2 (64)

= τε+ ρ
∑

u≥2

‖eTu‖2. (65)

Next, we evaluate
∑

u≥2 ‖eTu‖2, which appears in (47)
and (65). For u ≥ 2, we have

‖eTu‖2 ≤
√
K‖eTu‖∞ ≤ 1√

K
‖eTu−1‖1, (66)

and hence
∑

u≥2

‖eTu‖2 ≤
∑

u≥2

1√
K

‖eTu−1‖1 (67)

=
1√
K

∑

u≥1

‖eTu‖1 (68)

=
1√
K

‖eJ c‖1. (69)

To evaluate ‖eJ c‖1, we use the fact that ŝ = s + e is the
solution of the optimization problem (40). Since ŝ = s+ e is
the minimizer of the objective function, we have

2n∑

j=1

(w+
j |sj − 1|+ w−

j |sj + 1|)

≥
2n∑

j=1

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|) (70)

=
∑

j∈J
(w+

j |sj + ej − 1|+ w−
j |sj + ej + 1|)

+
∑

j∈J c

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|) (71)

≥
∑

j∈J
{w+

j (|sj − 1|− |ej |) + w−
j (|sj + 1|− |ej |)}

+
∑

j∈J c

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|), (72)

which results in
∑

j∈J c

(w+
j |sj − 1|+ w−

j |sj + 1|) + ‖eJ ‖1

≥
∑

j∈J c

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|). (73)

We split J c into J c ∩ S+ and J c ∩ S−, where S+ = {j |
sj = 1} and S− = {j | sj = −1}. The inequality (73) can be
rewritten as

∑

j∈J c∩S+

(w+
j |sj − 1|+ w−

j |sj + 1|)

+
∑

j∈J c∩S−

(w+
j |sj − 1|+ w−

j |sj + 1|) + ‖eJ ‖1

≥
∑

j∈J c∩S+

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|)

+
∑

j∈J c∩S−

(w+
j |sj + ej − 1|+ w−

j |sj + ej + 1|), (74)

which gives
∑

j∈J c∩S+

2w−
j +

∑

j∈J c∩S−

2w+
j + ‖eJ ‖1

≥
∑

j∈J c∩S+

(w+
j |ej |+ w−

j |ej + 2|)

+
∑

j∈J c∩S−

(w+
j |ej − 2|+ w−

j |ej |) (75)

≥
∑

j∈J c∩S+

{w+
j |ej |+ w−

j (−|ej |+ 2)}

+
∑

j∈J c∩S−

{w+
j (−|ej |+ 2) + w−

j |ej |} (76)

≥
∑

j∈J c∩S+

(w+
j − w−

j )|ej |+
∑

j∈J c∩S−

(w−
j − w+

j )|ej |

+
∑

j∈J c∩S+

2w−
j +

∑

j∈J c∩S−

2w+
j . (77)

It follows from (77) that

‖eJ ‖1
≥

∑

j∈J c∩S+

(w+
j − w−

j )|ej |+
∑

j∈J c∩S−

(w−
j − w+

j )|ej | (78)

≥ w̄‖eJ c‖1. (79)

From (79) and the Cauchy-Schwarz inequality ‖eJ ‖1/
√
K ≤

‖eJ ‖2, ‖eJ c‖1 is bounded as

‖eJ c‖1 ≤ 1

w̄
‖eJ ‖1 ≤

√
K

w̄
‖eJ ‖2 ≤

√
K

w̄
‖eJ∪T1‖2. (80)

Substituting (80) into (69) gives
∑

u≥2

‖eTu‖2 ≤ 1

w̄
‖eJ∪T1‖2. (81)

From (65) and (81), we have

‖eJ∪T1‖2 ≤ τε+
ρ

w̄
‖eJ∪T1‖2. (82)

Moreover, if w̄ − ρ > 0, i.e., δ2K < w̄/(
√
2 + w̄), then (82)

can be rewritten as

‖eJ∪T1‖2 ≤ (w̄ − ρ)−1w̄τε, (83)

and thus we have
∑

u≥2

‖eTu‖2 ≤ (w̄ − ρ)−1τε. (84)

We conclude from (47), (83), and (84) that

‖e‖2 ≤ τ(w̄ − ρ)−1(1 + w̄)ε. (85)
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