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Abstract—This paper proposes a decoding scheme for non-
orthogonal space-time block codes (NO-STBCs) in overloaded
multiple-input multiple-output (MIMO) systems, where the num-
ber of different transmitted streams is greater than that of
receive antennas. For the underdetermined decoding problem,
we iteratively solve a convex optimization problem with the
update of the parameters in the objective function, which utilizes
the discreteness of the transmitted symbols. For the NO-STBC
based on cyclic division algebra, we can reduce the order of
computational complexity of the algorithm by taking advantage
of the structure of the code. Simulation results show that the
proposed algorithm outperforms conventional schemes in the
decoding of large-scale overloaded NO-STBCs.

Index Terms—overloaded MIMO, non-orthogonal STBC, con-
vex optimization

I. INTRODUCTION

FOR multiple-input multiple-output (MIMO) communi-
cations, non-orthogonal space-time block codes (NO-

STBCs) have been studied to achieve both high rate and high
diversity order [1]. In [2], for example, a NO-STBC has been
proposed by using cyclic division algebra (CDA), which can
achieve both the full diversity and the information losslessness
under maximum likelihood (ML) decoding. Moreover, the rate
of the code is equal to the number of transmit antennas. Since
ML decoding becomes infeasible as the number of antennas in-
creases, several low-complexity schemes have been proposed,
e.g., local neighborhood search [3], [4], belief propagation [5],
and probabilistic data association [6].

Because of the limitation of size, physical weight, and/or
power consumption at the receiver, sufficient number of re-
ceive antennas might be unavailable in practical systems, such
as MIMO downlink communications with mobile terminals.
MIMO systems are called overloaded (or underdetermined)
when the number of different transmitted streams is greater
than that of receive antennas [7]. The decoding problem
of NO-STBCs becomes underdetermined in such overloaded
MIMO systems when the code rate equals the number of trans-
mit antennas, and thus the performance of the conventional de-
coding schemes for NO-STBCs significantly degrades for the
overloaded scenarios. Since the size of the effective channel
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matrix in the decoding of NO-STBCs is considerably larger
than that in uncoded MIMO systems, the decoding becomes
a larger-scale problem even when the number of antennas is
rather small. Hence, most signal detection schemes proposed
for overloaded MIMO (e.g., [7], [8]) have a prohibitive com-
putational complexity because they are partly based on ML
decoding. The decoding of NO-STBCs in overloaded MIMO
systems has not been discussed in the literature.

In this paper, we propose a decoding scheme for large-
scale NO-STBCs in overloaded MIMO systems. The proposed
scheme is based on iterative weighted sum-of-absolute-value
(IW-SOAV) optimization [9], which has been originally pro-
posed for signal detection in massive overloaded MIMO sys-
tems. It takes advantage of the discreteness of the transmitted
symbols and iteratively solves a convex optimization problem
with the update of the weights in the objective function.
Note that the performance of IW-SOAV largely depends on
the structure of the channel matrix, which are completely
different in uncoded MIMO signal detection and the decoding
of NO-STBCs. Hence, good performance of IW-SOAV is not
necessarily trivial in the decoding of NO-STBCs. Since IW-
SOAV generally works better for larger-scale problems, the
decoding of NO-STBCs with the large-scale effective channel
matrix can be one of remarkable applications of IW-SOAV.
For the NO-STBC based on CDA, we also propose a method
to reduce the order of the computational complexity of IW-
SOAV by utilizing the structure of the code. Simulation results
show that the proposed IW-SOAV outperforms conventional
schemes in terms of bit error rate (BER) for overloaded MIMO
systems with around or more than ten transmit antennas, and
is also robust to spatially correlated channels.

The rest of the paper is organized as follows. We describe
the system model in Section II and present the proposed
decoding scheme in Section III. Section IV shows some
simulation results and Section V gives the conclusion.

We use the following notations in this paper. We denote the
real part and the imaginary part by Re{·} and Im{·}, respec-
tively. The transpose, the Hermitian transpose, the imaginary
unit, an N×N identity matrix, and the vector whose elements
are all 0 are indicated by (·)T, (·)H, j, IN , and 0, respectively.
For a matrix U = [u1 · · · uN ] ∈ CM×N , vec(U) is given
by vec(U) =

[
uT
1 · · · uT

N

]T ∈ CMN . We denote the sign
function by sign(·) and the Kronecker product by ⊗.

II. SYSTEM MODEL

In this paper, we consider MIMO communications with Nt
transmit antennas and Nr receive antennas. By using a STBC,
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we send K complex data symbols s̃1, . . . , s̃K ∈ C during T
time slots. We define the STBC matrix as X̃ = [x̃1 · · · x̃T ] ∈
CNt×T , where x̃t = [x̃1,t · · · x̃Nt,t]

T ∈ CNt (t = 1, . . . , T )
indicates the transmitted signal vector at the tth time slot and
x̃nt,t is the transmitted symbol from the ntth transmit antenna
(nt = 1, . . . , Nt). In linear dispersion STBCs, the STBC matrix
X̃ is given by

X̃ =
K∑

k=1

C̃ks̃k, (1)

where C̃k ∈ CNt×T is a weight matrix corresponding to the
data symbol s̃k. In [2], for example, the NO-STBC matrix

X̃ =

Nt−1∑

nt=0





s̄0,nt δs̄Nt−1,ntω
nt
Nt

· · · δs̄1,ntω
(Nt−1)nt
Nt

s̄1,nt s̄0,ntω
nt
Nt

· · · δs̄2,ntω
(Nt−1)nt
Nt

s̄2,nt s̄1,ntω
nt
Nt

· · · δs̄3,ntω
(Nt−1)nt
Nt

...
...

...
...

s̄Nt−2,nt s̄Nt−3,ntω
nt
Nt

· · · δs̄Nt−1,ntω
(Nt−1)nt
Nt

s̄Nt−1,nt s̄Nt−2,ntω
nt
Nt

· · · s̄0,ntω
(Nt−1)nt
Nt





ρnt

(2)

has been proposed by using CDA, where s̄nt,n′
t

=
s̃ntNt+n′

t +1 ∈ C (nt, n′
t = 0, . . . , Nt − 1) are the complex data

symbols to be sent, and ωNt = ej
2π
Nt . Since we use T = Nt

time slots to send K = N2
t symbols in (2), the rate of this NO-

STBC is K/T = Nt. Moreover, when δ = e
√
5j and ρ = ej ,

the full diversity is also achieved under ML decoding [2].
The received signal matrix Ỹ ∈ CNr×T corresponding to

X̃ during T time slots is given by

Ỹ = H̃X̃ + Ṽ , (3)

where H̃ ∈ CNr×Nt is the channel matrix and Ṽ ∈ CNr×T is
the zero mean additive white Gaussian noise matrix. From (1)
and (3), we have Ỹ =

∑K
k=1 H̃C̃ks̃k + Ṽ and hence ỹ :=

vec(Ỹ ) ∈ CNrT can be written as

ỹ =
K∑

k=1

(IT ⊗ H̃)vec(C̃k)s̃k + vec(Ṽ ) (4)

= (IT ⊗ H̃)C̃s̃+ ṽ (5)
= Ãs̃+ ṽ, (6)

where s̃ = [s̃1 · · · s̃K ]T ∈ CK , ṽ = vec(Ṽ ) ∈ CNrT , C̃ =[
vec(C̃1) · · · vec(C̃K)

]
∈ CNtT×K , and Ã = (IT ⊗ H̃)C̃ ∈

CNrT×K [3]. Note that the size of the effective channel matrix
Ã ∈ CNrT×K is much larger than that of H̃ ∈ CNr×Nt . We
can rewrite the complex-valued signal model (6) as the real-
valued signal model given by

y = As+ v, (7)

where y =
[
Re{ỹ}T Im{ỹ}T

]T ∈ R2NrT , s =
[
Re{s̃}T

Im{s̃}T
]T ∈ R2K , v =

[
Re{ṽ}T Im{ṽ}T

]T ∈ R2NrT , and

A =

[
Re{Ã} −Im{Ã}
Im{Ã} Re{Ã}

]
∈ R2NrT×2K . (8)

Algorithm 1 IW-SOAV for decoding STBCs
a) Set ŝ = 0.
b) Iterate i)–iii) for L times.

i) Update w+
k and w−

k .
ii) Set ε ∈ (0, 1), γ > 0, r0 ∈ R2N2

t , and Mitr ∈ N.
iii) For m = 0, 1, 2, · · · ,Mitr, iterate






zm = proxγfw(rm)

θm ∈ [ε, 2− ε]

rm+1 = rm + θm
((

I2N2
t
+ αγATA

)−1

·
(
2zm − rm + αγATy

)
− zm

)

and let ŝ = zMitr .
c) Compute sign(ŝ) ∈ {1,−1}2N2

t as the estimate of s.

When we use the NO-STBC given by (2) and assume Nr < Nt,
the decoding is an underdetermined problem because 2K =
2NtT > 2NrT and hence A becomes a fat matrix.

III. PROPOSED DECODING SCHEME

In this section, we present a decoding scheme to estimate
the transmitted symbols s on the basis of IW-SOAV [9]. We
use the NO-STBC given by (2) with δ = e

√
5j and ρ = ej

and hence T = Nt and K = N2
t . We also propose a method

to reduce the order of the computational complexity of IW-
SOAV.

A. Decoding via IW-SOAV
IW-SOAV has been proposed for a massive overloaded

MIMO signal detection, and can be applied to the signal
model (7) with STBCs. In this paper, we assume quadrature
phase shift keying (QPSK) modulation with s̃k ∈ {1+j,−1+
j,−1 − j, 1 − j}, though IW-SOAV can be extended for
any quadratic amplitude modulation (QAM) [9]. Under this
assumption, each element of s takes only 1 or −1. By taking
advantage of the discreteness, IW-SOAV iteratively solves the
following convex weighted sum-of-absolute-value (W-SOAV)
optimization problem

ŝ = arg min
z∈R2N2

t

fw(z) +
α

2
‖y −Az‖22, (9)

where fw(z) =
∑2N2

t
k=1

(
w+

k |zk − 1|+ w−
k |zk + 1|

)
, zk is

the kth element of z, and α (> 0) is a parameter. As
discussed in [9], the function fw(·) can be regarded as a
regularizer for the discrete-valued vector in {1,−1}2N2

t . The
weight parameters w+

k and w−
k are set to 1/2 at the first

iteration, and iteratively updated by using the estimate ŝ
obtained at the previous iteration. In [9], they are updated
as w+

k = eΛ̂k/(1 + eΛ̂k) and w−
k = 1/(1 + eΛ̂k), respectively,

where Λ̂k is an approximated posterior log likelihood ratio
(LLR) of sk calculated with the previous estimate.

In Algorithm 1, we summarize the proposed decoding
scheme via IW-SOAV using Douglas-Rachford algorithm [10]
to solve (9). After updating the weights in b) i), we solve the
W-SOAV optimization (9) in b) ii) and b) iii). proxγfw(·) is
the proximity operator [10] of the function fw(·) (See [9]).
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B. Complexity Reduction for Matrix Inversion
The computational complexity of IW-SOAV might be

dominated by the matrix inversion
(
I2N2

t
+ αγATA

)−1 ∈
R2N2

t ×2N2
t , which requires the complexity of O

(
N6

t
)

by the
direct calculation. For the NO-STBC given by (2), however,
we can reduce the complexity by utilizing the structure of the
matrix A ∈ R2NtNr×2N2

t .
To reduce the complexity, we rewrite

(
I2N2

t
+ αγATA

)−1

by using the fact that C̃ ∈ CN2
t ×N2

t is a scaled unitary
matrix [3], [5], which means C̃C̃H = NtIN2

t
. From the matrix

inversion lemma [11], we have
(
I2N2

t
+ αγATA

)−1

= I2N2
t
− αγAT

(
I2NtNr + αγAAT

)−1
A. (10)

The matrix
(
I2NtNr + αγAAT

)−1 is written with the matrix

B̃ :=
(
INtNr + αγÃÃH

)−1
∈ CNtNr×NtNr as

(
I2NtNr + αγAAT

)−1
=

[
Re{B̃} −Im{B̃}
Im{B̃} Re{B̃}

]
. (11)

We thus further calculate B̃ as

B̃ =

(
INtNr + αγ

(
INt ⊗ H̃

)
C̃C̃H

(
INt ⊗ H̃

)H
)−1

(12)

=
(
INtNr + αγNt

(
INt ⊗ H̃

)(
INt ⊗ H̃H

))−1
(13)

=
(
INt ⊗

(
INr + αγNtH̃H̃H

))−1
(14)

= INt ⊗
(
INr + αγNtH̃H̃H

)−1
. (15)

The computational complexity for
(
INr + αγNtH̃H̃H

)−1
is

only O
(
NtN2

r
)

because it is dominated by the calculation of
H̃H̃H. Hence, we can obtain B̃ and

(
I2NtNr + αγAAT

)−1

with the complexity O
(
N2

t N
2
r
)
. It should be noted that we

need to calculate the inverse matrix only once in the algorithm.
From (10), once the matrix

(
I2NtNr + αγAAT

)−1 is obtained,
we can update rm only with the addition of the vectors
and the multiplication of the matrix and the vector, which
requires O

(
N3

t Nr
)
. The update of w+

k and w−
k in b) i)

of Algorithm 1 can also be computed with O
(
N3

t Nr
)

per
iteration [9]. Hence, the overall computational complexity
of the proposed algorithm is O

(
N3

t Nr
)

when Nt > Nr.
In TABLE I, we compare the computational complexity of
IW-SOAV and some conventional schemes, i.e., the linear
minimum mean-square-error (LMMSE), reactive tabu search
(RTS) [4], enhanced RTS (ERTS) [12], and ML. The order of
the complexity of the proposed IW-SOAV with the complexity
reduction is much lower than the conventional schemes.

IV. SIMULATION RESULTS

We show some numerical results obtained by computer
simulations. We use QPSK modulation and the NO-STBC
given by (2) with δ = e

√
5j and ρ = ej . For the weight

update in IW-SOAV, we use the same method as that in [9].
The parameters in IW-SOAV are ε = 0.1, γ = 1, r0 = 0,
Mitr = 50, and θm = 1.9 (m = 0, . . . ,Mitr).

TABLE I
COMPUTATIONAL COMPLEXITY

LMMSE O
(
N3

t N
3
r
)

RTS [4] O
(
N5

t Nr
)

ERTS [12] O
(
N5

t Nr
)
+O

(
NRTSN3

t Nr
)

(NRTS: number of RTS)
ML O

(
22N

2
t N3

t Nr

)

IW-SOAV (w/o complexity reduction) O
(
N6

t
)

IW-SOAV (w/ complexity reduction) O
(
N3

t Nr
)

Fig. 1. BER performance in i.i.d. channels (Nt = 3, Nr = 2)

Fig. 2. BER performance in i.i.d. channels (Nt = 9, Nr = 6)

Figures 1–3 show the BER performance of the proposed
and conventional schemes for overloaded NO-STBCs. In the
figures, we assume independent and identically distributed
(i.i.d.) channels as H̃ = H̃i.i.d., where the elements of
H̃i.i.d. are i.i.d. circular complex Gaussian variables with zero
mean and unit variance. We denote the LMMSE decoding by
“LMMSE”, the RTS-based decoding [4] by “RTS”, the ML
decoding by “ML”, and the proposed IW-SOAV scheme by
“Proposed.” We also plot the performance of ERTS [12], which
has been proposed for signal detection in uncoded overloaded
MIMO systems with tens of antennas. The parameters of RTS
and ERTS are the same as those in [4] and [12], respectively.
For the proposed IW-SOAV, the parameter α is the same as
that in [9], i.e., α = 0.01, 0.1, 0.3, and 1 for SNR ranges
of 0–10, 12.5–20, 22.5, and 25–30 [dB], respectively. In
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Fig. 3. BER performance in i.i.d. channels (Nt = 12, Nr = 8)

Fig. 1, where (Nt, Nr) = (3, 2) with A of size 12 × 18, the
proposed IW-SOAV has much worse performance than ML
decoding for SNRs greater than 10 dB. Figure 2 shows the
performance for more number of antennas (Nt, Nr) = (9, 6),
where the size of A is 108×162. In this case, we estimate the
transmitted symbol vector in {1,−1}162, which is equivalent
to the signal detection for uncoded massive overloaded MIMO
with (Nt, Nr) = (81, 54). The ML decoding in this scenario
is impractical because of the huge computational complexity,
while the proposed IW-SOAV has better performance than
other schemes for high SNRs. Although ERTS achieves better
performance than the proposed IW-SOAV for SNRs around 15
dB, its complexity is about ten times larger than the proposed
IW-SOAV with L = 3 [9]. In Fig. 3, where (Nt, Nr) = (12, 8)
with A of size 192×288, the proposed IW-SOAV outperforms
the conventional schemes for all SNRs. A possible reason for
the performance improvement is that the rows of A become
more orthogonal when Nt and Nr increase.

Figure 4 shows the BER performance in spatially corre-
lated channels. We assume (Nt, Nr) = (12, 8) and H̃ =

Φ
1
2
r H̃i.i.d.Φ

1
2
t , where Φr ∈ CNr×Nr and Φt ∈ CNt×Nt are the

correlation matrices at the receiver and transmitter, respec-
tively [13]. We consider a linear array with equally spaced
antennas and define [Φr]i1,i2 = J0(|i1 − i2| · 2πdr/λ) and
[Φt]i1,i2 = J0(|i1 − i2| · 2πdt/λ), where [Φr]i1,i2 and [Φt]i1,i2
represent the (i1, i2) element of Φr and Φt, respectively. Here,
J0(·) indicates the zeroth-order Bessel function of the first
kind. We denote the antenna spacing at the receiver and the
transmitter by dr and dt, respectively, and set dr = dt = 0.5λ
in the simulations, where λ is the wavelength. Figure 4 shows
that the performance of the proposed IW-SOAV in spatially
correlated channels is comparable to that in i.i.d. channels,
while the BER of ERTS significantly degrades.

V. CONCLUSION

In this paper, we have proposed the decoding scheme for
overloaded NO-STBCs and have evaluated its performance.
The proposed scheme iteratively solves the W-SOAV optimiza-
tion problem with the update of the weight parameters. We
also propose the complexity reduction method for the proposed

Fig. 4. BER performance in spatially correlated channels (Nt = 12, Nr = 8)

scheme with the NO-STBC based on CDA. Simulation results
have shown that the proposed decoding scheme achieves better
BER performance than the conventional schemes for large-
scale problems. The results also suggest that IW-SOAV can
achieve good performance by using the NO-STBC even in not-
so-large overloaded MIMO systems. We thus conclude that the
decoding of NO-STBCs can be one of remarkable applications
of IW-SOAV. Future work includes theoretical performance
analyses of the proposed decoding scheme.
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