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Abstract—This paper proposes a maximum a posteriori (MAP)
estimation-based error recovery method for massive multiple-
input multiple-output (MIMO) signal detection. The error recov-
ery is a technique to improve the estimate of transmitted signals
taking advantage of the sparsity of the error signal. We formulate
the error recovery problem as the MAP estimation, where not
only the sparsity but also the discreteness of the error are taken
into consideration explicitly. In the proposed MAP estimation,
we can also use not only the hard decision of the transmitted
signal vector but also the soft decision obtained before the error
recovery. The problem of MAP estimation is relaxed into the sum-
of-absolute-value optimization problem, which can be efficiently
solved with proximal splitting methods. Simulation results show
that the proposed method outperforms the conventional method
in terms of bit error rate (BER) performance.

I. INTRODUCTION

To achieve very high spectral efficiency in wireless com-
munication systems, much focus has been placed on mas-
sive multiple-input multiple-output (MIMO) communications,
where tens or hundreds of antennas are equipped in each trans-
mitter and receiver [1]. Since the computational complexity of
the signal detection for MIMO systems generally increases
along with the increase of the antennas, a low-complexity
detection scheme will be required for such massive MIMO
communications. Linear signal detections, including the zero
forcing (ZF) and the minimum mean square error (MMSE)
detection, can be possible candidates for massive MIMO sys-
tems. However, since the performance of the linear detectors
is far from the optimal maximum likelihood (ML) detection,
some non-linear detection schemes have also been proposed
to achieve nearly optimal performance. The likelihood ascent
search (LAS) [2] and the reactive tabu search (RTS) [3] are
non-linear detectors based on the local neighborhood search
of likelihood. The belief propagation techniques also provide
a low complexity detector [4].

As another approach for massive MIMO signal detection,
post-detection sparse error recovery (PDSR) has been pro-
posed [5]. It improves the estimate obtained by the conven-
tional detections, such as ZF or MMSE detection, using the
fact that the error vector between the true transmitted signal
vector and its estimate is sparse if the estimate is reliable
enough. By using the initial estimate with some conventional
detections, PDSR transforms the original linear equation of
the transmitted signal vector into a linear equation of the error
vector. If the error vector is sparse, errors can be specified with
compressed sensing technique [6]. In [5], multipath matching

pursuit (MMP) [7], which is a greedy algorithm and an
extension of orthogonal matching pursuit (OMP), is used as
the compressed sensing algorithm.

In this paper, we propose an error recovery method for
massive MIMO systems, which uses the fact that the error
vector is not only sparse but also discrete when we employ
digital modulations. To use the both properties of the error
vector, we formulate the error recovery as a maximum a pos-
teriori (MAP) estimation. In the formulation, we use the initial
soft decision of the transmitted signal vector obtained before
the error recovery, while the conventional recovery method
uses the hard decision alone. Since the MAP estimation for
the error vector is a combinational optimization problem, we
relax it into the sum-of-absolute-value (SOAV) optimization
problem [8] with a similar approach as in [9], which has
been proposed for the multiuser detection in machine-to-
machine communications. While the conventional relaxation
might result in a non-convex optimization problem in general,
the proposed relaxation method can always give a convex one.
The convex SOAV optimization problem after the relaxation
can be solved with the low-complexity proximal splitting
methods [10]. Simulation results show that the proposed
method outperforms the conventional method for large and
very large MIMO systems.

In the rest of the paper, we use the following notations: Su-
perscript (·)T and (·)H denote the transpose and the Hermitian
transpose, respectively. We represent the imaginary unit by j,
the identity matrix by I , and a vector whose elements are all 0
by 0. For a vector a = [a1 · · · aN ]T ∈ RN , ℓ0 norm ∥a∥0 of
a denotes the number of nonzero elements in a. We also define
the ℓ1 and ℓ2 norms of a as ∥a∥1 =

∑N
i=1 |ai| and ∥a∥2 =√∑N

i=1 a
2
i , respectively.

II. SYSTEM MODEL

We consider a MIMO system with n transmit antennas and
m receive antennas. For simplicity, precoding is not considered
and the number of transmitted streams is assumed to be equal
to that of transmit antennas. In addition, we employ quadrature
phase shift keying (QPSK) and define the alphabet of the
transmitted symbols as S̃ = {1 + j,−1 + j,−1 − j, 1 − j}.
The transmitted signal vector s̃ = [s̃1 · · · s̃n]T ∈ S̃n is
composed of signals transmitted from n transmit antennas,
where s̃j (j = 1, . . . , n) denotes the symbol sent from the jth
transmit antenna, E[s̃] = 0, and E[s̃s̃H] = 2I . The received
signal vector ỹ = [ỹ1 · · · ỹm] ∈ Cm, where ỹi (i = 1, . . . ,m)
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denotes the signal received at the ith receive antenna, is given
by

ỹ = H̃s̃+ ṽ, (1)

where

H̃ =

⎡

⎢⎣
h̃1,1 · · · h̃1,n

...
. . .

...
h̃m,1 · · · h̃m,n

⎤

⎥⎦ ∈ Cm×n (2)

is a flat fading channel matrix and h̃i,j represents the channel
gain from the jth transmit antenna to the ith receive antenna.
ṽ ∈ Cm is the additive white complex Gaussian noise vector
with zero mean and covariance matrix of σ2

vI . The signal
model (1) can be rewritten as

y = Hs+ v, (3)

where

y =

[
Re{ỹ}
Im{ỹ}

]
, H =

[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
,

s =

[
Re{s̃}
Im{s̃}

]
, v =

[
Re{ṽ}
Im{ṽ}

]
. (4)

Since s̃ ∈ {1+ j,−1+ j,−1− j, 1− j}n, s is a binary vector
whose elements are in S = {1,−1}.

III. CONVENTIONAL SPARSE ERROR RECOVERY METHOD

In the conventional sparse error recovery method [5], the
non-sparse system model (1), where s̃ is a dense vector, is
converted into the sparse one to apply the compressed sensing
technique. Let s̃est ∈ Cn be the estimate of s̃ via a detection
method, e.g., ZF or MMSE detection. When we use the linear
MMSE detection, the estimate is given by

s̃est =
(
H̃HH̃ + σ2

vI
)−1

H̃Hỹ. (5)

We then obtain s̃dest = QS̃(s̃est) ∈ S̃n, where the element-wise
function QS̃(·) maps each element into its closest symbol in
S̃, i.e., it provides the hard decision of s̃. The key point is
that the error vector ẽ = s̃ − s̃dest is sparse if the estimate
is reliable enough. The transformation into the sparse system
can be performed by subtracting H̃s̃dest from (1) as

ỹ − H̃s̃dest = H̃
(
s̃− s̃dest

)
+ ṽ (6)

ỹ′ = H̃ẽ+ ṽ, (7)

where ỹ′ = ỹ−H̃s̃dest. From (7), we can reconstruct the error
vector ẽ via compressed sensing algorithms, such as OMP or
MMP. Denoting the estimate of the error vector ẽ as ẽest, we
can get the recovered estimate of s̃ as s̃dest + ẽest.

IV. PROPOSED ERROR RECOVERY METHOD

Using the transformation from the non-sparse system into
the sparse one, we can reconstruct the error vector via com-
pressed sensing technique. By applying compressed sensing
algorithms to (7), however, we cannot use the discreteness of
the error vector and the soft decision of the transmitted signal
vector obtained before the error recovery. To achieve a better
performance, we propose an error recovery method based on
MAP estimation with several relaxations.

A. MAP Estimation

The proposed method uses the real signal model (3) during
error recovery. Let ŝ ∈ R2n be the initial estimate of s and
ŝd = QS(ŝ) ∈ S2n, we can transform (3) into

y′ = He+ v, (8)

where y′ = y −Hŝd and e = s− ŝd.
The MAP estimation of e maximizing p(e | y′) ∝ p(y′ |

e)p(e) is equivalent to minimizing − log p(y′ | e)− log p(e).
Since y′ is written as (8) and v has the covariance matrix of
(σ2

v/2)I , the log likelihood function is given by

log p(y′ | e) = − 1

σ2
v

∥y′ −He∥22 −
1

2
log(πσ2

v). (9)

Assuming the independence of the elements of e, we approxi-
mate p(e) ≈

∏2n
j=1 p(ej), where ej represents the jth element

of e. The objective function to be minimized can be written
as

1

σ2
v

∥y′ −He∥22 −
2n∑

j=1

log p(ej). (10)

B. LLR Calculation

To minimize (10), we need to express p(ej) explicitly.
Since ej = sj − ŝdj , ej is discrete and take a value only in
B = {b1, b2, b3} = {−2, 0, 2}. The probability pℓ,j = p(ej =
bℓ) (ℓ = 1, 2, 3) is given by

p1,j = p(sj = −1), p2,j = p(sj = +1), p3,j = 0 (11)

if ŝdj = +1, and

p1,j = 0, p2,j = p(sj = −1), p3,j = p(sj = +1) (12)

if ŝdj = −1. For the calculation of (11) and (12), we use the
posterior probabilities p(sj = +1 | y) and p(sj = −1 | y)
instead of the prior probabilities p(sj = +1) and p(sj = −1),
respectively. To obtain the posterior probability, we calculate
the posterior log likelihood ratio (LLR) of the transmitted
symbols

λj = log
p(sj = +1 | y)
p(sj = −1 | y) (13)
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from the estimate ŝ. For the reduction of the computational
complexity, we assume the independence of each received
signal and approximate (13) as

λj = log
p(y | sj = +1)

p(y | sj = −1)
(14)

≈
2m∑

i=1

log
p(yi | sj = +1)

p(yi | sj = −1)
. (15)

We further rewrite yi as yi = hi,jsj + ξji , where ξji =∑2n
k=1,k ̸=j hi,ksk + vi. Regarding ξji as the Gaussian random

variable with mean µξji
and variance σ2

ξji
by using the Gaussian

approximation [4], (15) can be rewritten as

2m∑

i=1

log
p(yi | sj = +1)

p(yi | sj = −1)
≈

2m∑

i=1

2hi,j

(
yi − µξji

)

σ2
ξji

. (16)

Since ξji =
∑2n

k=1,k ̸=j hi,ksk + vi, µξji
and σ2

ξji
are given by

µξji
=

2n∑

k=1,k ̸=j

hi,kE[sk] (17)

σ2
ξji

=
2n∑

k=1,k ̸=j

h2
i,k

(
1− E[sk]

2
)
+

σ2
v

2
. (18)

Using the estimates ŝ1, . . . , ŝ2n, we obtain µξji
and σ2

ξji
by

replacing E[sk] with

ŝ′k =

⎧
⎪⎨

⎪⎩

−1 (ŝk < −1)

ŝk (−1 ≤ ŝk < 1)

1 (1 ≤ ŝk)

, (19)

which is bounded in [−1, 1] such that 1 − E[sk]2 in (18) is
positive. From the posterior LLR λj obtained in the above
manner, the posterior probabilities are given by

p(sj = +1 | y) = eλj

1 + eλj
, p(sj = −1 | y) = 1

1 + eλj
. (20)

C. Relaxation into Convex Optimization Problem
In the similar way as in [9], we transform the objective

function (10) and relax the MAP estimation into a convex
optimization problem. The probability p(ej) can be written
as p(ej) =

∏3
ℓ=1 p

δ(bℓ,ej)
ℓ,j , where we define δ(α,β) = 1 if

α = β, δ(α,β) = 0 if α ̸= β, and 00 = 1. Since the objective
function (10) is rewritten as

1

σ2
v

∥y′ −He∥22 −
2n∑

j=1

3∑

ℓ=1

δ(bℓ, ej) log pℓ,j (21)

=
1

σ2
v

∥y′ −He∥22 −
2n∑

j=1

3∑

ℓ=1

(1− ∥ej − bℓ∥0) log pℓ,j , (22)

we consider the following optimization problem:

minimize
x∈B2n

1

σ2
v

∥y′ −Hx∥22 +
2n∑

j=1

3∑

ℓ=1

(log pℓ,j)∥xj − bℓ∥0.

(23)

The problem (23) is a combinational optimization problem
and is difficult to solve. We thus consider to relax (23) into
a convex optimization problem with the idea of compressed
sensing. By simply replacing B2n and ℓ0 norm with R2n and
ℓ1 norm respectively, however, the resultant problem cannot
be convex because log pℓ,j will be zero or negative. Hence,
we firstly replace B2n and log pℓ,j with R2n and qℓ,j > 0
respectively, as

minimize
x∈R2n

1

σ2
v

∥y′ −Hx∥22 +
2n∑

j=1

3∑

ℓ=1

qℓ,j∥xj − bℓ∥0, (24)

and then relax (24) into the SOAV optimization problem [8]
as

minimize
x∈R2n

1

σ2
v

∥y′ −Hx∥22 +
2n∑

j=1

3∑

ℓ=1

qℓ,j |xj − bℓ|. (25)

The coefficients qℓ,j are determined so that they could satisfy
∑

ℓ∈Lj

(log pℓ,j)∥xj − bℓ∥0 + Cj =
∑

ℓ∈Lj

qℓ,j∥xj − bℓ∥0 (26)

for all xj = bℓ (ℓ ∈ Lj), where Lj = {ℓ | pℓ,j > 0} and Cj

is a positive constant. Note that the indices ℓ corresponding to
pℓ,j = 0 is not considered in the condition (26). For ℓ /∈ Lj ,
qℓ,j is fixed to 0. For example, if ŝdj = 1, p1,j , p2,j > 0 and
p3,j = 0, then Lj = {1, 2} and the condition (26) becomes
q2,j = log p2,j + Cj and q1,j = log p1,j + Cj . We thus select
as Cj = −min(log p1,j , log p2,j) + C̃j (C̃j ≥ 0) and obtain
q1,j , q2,j ≥ 0. In this case, q3,j is fixed to 0. In general, the
condition (26) results in

qℓ,j = log pℓ,j +
Cj

|Lj |− 1
(27)

for all ℓ ∈ Lj . Hence, we can obtain a positive qℓ,j by selecting
as Cj = −(|Lj | − 1)minℓ log pℓ,j + C̃j (C̃j ≥ 0). It should
be noted that in the conventional relaxation method [9], the ℓ0
norm in the right hand of (26) is replaced with the ℓ1 norm to
keep the value of the objective function in (23) and (25) on
B2n, except for a constant term. In some cases, however, the
optimization problem with the conventional relaxation is still
non-convex due to a negative value of qℓ,j . On the other hand,
the proposed relaxation can always select a positive qℓ,j and
ensure that the optimization problem (25) is convex.

The optimization problem (25) can be solved via proximal
splitting methods [10]. Letting g(x) = ∥y′ − Hx∥22/σ2

v and
fQ(x) =

∑2n
j=1

∑3
ℓ=1 qℓ,j |xj − bℓ|, we can rewrite (25) as

minimize
x∈R2n

fQ(x) + g(x). (28)

A sequence xk (k = 0, 1, . . .) converging the solution of (28)
can be obtained with the following algorithm:
Algorithm 1. (Douglas-Rachford Algorithm [10] for (28))

1) Fix ε ∈ (0, 1), γ > 0, and z0 ∈ R2n.
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2) For k = 0, 1, 2, . . ., iterate
⎧
⎪⎨

⎪⎩

xk = proxγfQ(zk)

λk ∈ [ε, 2− ε]

zk+1 = zk + λk(proxγg(2xk − zk)− xk).

For a function φ : R2n → R, its proximity operator proxφ :
R2n → R2n is defined as

proxφ(x) = arg min
u∈R2n

φ(u) +
1

2
∥x− u∥22. (29)

By definition, the proximity operator of γfQ is given by

[proxγfQ(x)]j

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xj − γ(−q1,j − q2,j − q3,j) (xj < Q1,j)

−2 (Q1,j ≤ xj < Q2,j)

xj − γ(q1,j − q2,j − q3,j) (Q2,j ≤ xj < Q3,j)

0 (Q3,j ≤ xj < Q4,j)

xj − γ(q1,j + q2,j − q3,j) (Q4,j ≤ xj < Q5,j)

2 (Q5,j ≤ xj < Q6,j)

xj − γ(q1,j + q2,j + q3,j) (Q6,j ≤ xj)

,

(30)

where [proxγfQ(x)]j represents the jth element of
proxγfQ(x) and

Q1,j = −2 + γ(−q1,j − q2,j − q3,j) (31)
Q2,j = −2 + γ(q1,j − q2,j − q3,j) (32)
Q3,j = γ(q1,j − q2,j − q3,j) (33)
Q4,j = γ(q1,j + q2,j − q3,j) (34)
Q5,j = 2 + γ(q1,j + q2,j − q3,j) (35)
Q6,j = 2 + γ(q1,j + q2,j + q3,j). (36)

Note that proxγfQ(x) is element-wise function because the
minimization in (29) can be performed separately for each
element. The proximity operator of proxγg is given by

proxγg(x) =

(
I +

γ

σ2
v

HTH

)−1 (
x+

γ

σ2
v

HTy′
)
. (37)

By using Algorithm 1, we can solve the optimization prob-
lem (25) and obtain the estimate ê of the error vector e.
The recovered estimate of the transmitted signal vector s is
obtained as ŝd + ê.

D. Iterative Error Recovery
To further improve the performance, we also propose an

iterative error recovery. In each iteration, the estimate obtained
in the previous iteration is used as the initial estimate. The
algorithm of the proposed method is summarized as follows:
Algorithm 2. (Error Recovery via SOAV optimization)

1) Get an initial estimate of s.
2) Iterate a)–f) for T times.

a) Calculate the posterior LLR λj from the current
estimate of s.

b) Compute pℓ,j with (11), (12), and (20).

SNR per receive antenna (dB)
0 5 10 15 20 25 30
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R

10-4

10-3

10-2

10-1

100

MMSE
MMSE+MMP
MMSE+SOAV (T=1)
MMSE+SOAV (T=2)
MMSE+SOAV (T=3)
MMSE+SOAV (T=4)
MMSE+SOAV (T=5)

Fig. 1. BER performance for (n,m) = (32, 32)

c) Relax (23) into (25) by replacing the coefficients
log pℓ,j with qℓ,j satisfying (26).

d) Fix ε ∈ (0, 1), γ > 0,K > 0, and z0 ∈ R2n.
e) For k = 0, 1, . . . ,K, iterate

⎧
⎪⎨

⎪⎩

xk = proxγfQ(zk)

λk ∈ [ε, 2− ε]

zk+1 = zk + λk(proxγg(2xk − zk)− xk)

and let ê = xK .
f) Modify the current estimate into ŝd + ê.

3) Apply QS(·) to the current estimate and obtain the final
estimate of s.

V. SIMULATION RESULTS

In this section, we evaluate the BER performance of the
proposed method and the conventional method via computer
simulations. In the simulations, flat Rayleigh fading channels
are assumed and H̃ is composed of i.i.d. complex Gaussian
random variables with zero mean and unit variance. For
the MMP algorithm in the conventional method, the number
of iterations, the number of paths from each candidate in
each iteration, and the maximum number of candidates in
each iteration are set to KMMP = ⌈0.15n⌉, LMMP = 2,
NMMP = 5, respectively. For the proposed method, the
parameters of the Douglas-Rachford Algorithm are fixed to
K = 30, ε = 0.1, γ = 1,λk = 1.9 (k = 0, 1, . . . ,K) and
z0 = 0. In the proposed relaxation of the MAP estimation,
C̃j = 1 (j = 1, . . . , 2n) is used.

Figures 1 and 2 show the BER performance for (n,m) =
(32, 32), (128, 128), respectively. MMSE, MMSE+MMP, and
MMSE+SOAV denote linear MMSE detection, conventional
error recovery method via MMP, and our proposed error
recovery method via SOAV optimization, respectively. In both
recovery methods, the estimate of MMSE detection is used as
the initial estimate. The figures show that the proposed method
outperforms the conventional method even when T = 1,
which corresponds to only one iteration of error recovery. It is
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Fig. 2. BER performance for (n,m) = (128, 128)
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Fig. 3. BER performance for (n,m) = (32, 24)

because the proposed method uses the discreteness of the error
vector and the initial soft decision, which are not considered in
the conventional method. We can also see that the performance
is further improved by iterating the error recovery.

Figures 3 and 4 show the performance for (n,m) =
(32, 24), (128, 96), respectively. Such scenario, where the
number of receive antennas is less than that of trans-
mitted streams, is called overloaded (or underdetermined)
MIMO [11]. Since the performance of MMSE detection
severely degraded in overloaded MIMO, the conventional
method also has a poor performance. However, the proposed
method performs well even in that case, especially in large-
scale systems.

VI. CONCLUSION

In this paper, we have proposed the MAP estimation-based
error recovery for MIMO signal detection, where we can use
both the sparsity and the discreteness of the error vector. The
proposed method can also use the soft decision obtained by

SNR per receive antenna (dB)
0 5 10 15 20 25 30
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MMSE+SOAV (T=2)
MMSE+SOAV (T=3)
MMSE+SOAV (T=4)
MMSE+SOAV (T=5)

Fig. 4. BER performance for (n,m) = (128, 96)

the first detection, while the conventional method uses the
hard decision alone. Simulation results show that our proposed
method has better BER performance than the conventional
method.
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