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Abstract—Optical analog circuits are promising devices for
signal processing due to their potential for low latency and low
power computations. However, implementing iterative algorithms
on such circuits is challenging, especially due to additive noise
from optical amplifiers. Our previous work investigated the
feasibility of image restoration using total variation regularization
under these constraints. In this study, we aim to further im-
prove algorithm performance by learning algorithm parameters
through a deep unfolding framework. Simulation results show
that the learned parameters achieve comparable performance to
that of manually tuned fixed parameters. This finding suggests
that, given the implementation cost of dynamically varying
parameters, using well-optimized fixed parameters may be more
practical for image restoration on optical analog circuits.

Index Terms—Optical analog circuits, image restoration,
ADMM, PDS, deep unfolding

I. INTRODUCTION

Optical devices have attracted attention as a technology that
can perform vector-matrix products with low latency and low
power consumption [1]. Unlike traditional electronic circuits
that use electrons as information carriers, optical analog cir-
cuits operate using photons. As a result, they are expected
to perform operations such as matrix-vector multiplication
with lower latency and reduced power consumption compared
to their electronic counterparts [2]–[6]. However, signal pro-
cessing using optical analog circuits involves several imple-
mentation constraints. For instance, division by dynamically
changing variables at each iteration is difficult to implement,
and signal amplification inevitably introduces additive noise.

To address the challenges associated with optical analog
circuits, the implementation of iterative signal processing algo-
rithms has been discussed. In compressed sensing, for exam-
ple, performance nearly equivalent to conventional methods
has been achieved by replacing the dynamic division within
iterative algorithms with an appropriate fixed value [7]. In
addition, when evaluating performance under the effects of
amplifier noise, it has been demonstrated that the performance
remains comparable to the noise-free case [8]. For image
restoration, it is also shown in [9] that images can be ef-
fectively denoised, even when noise from signal amplification
is taken into account. In [9], iterative algorithms such as the
alternating direction method of multipliers (ADMM) [10], [11]
and primal dual splitting (PDS) [12], [13] are investigated as
promising approaches for image restoration methods tailored
to implementation in optical analog circuits.

The performance of many iterative algorithms can be im-
proved by tuning their parameters at each iteration. To tackle
this challenge, an approach known as deep unfolding has
recently attracted attention [14], [15]. In this framework, each
iteration of the algorithm corresponds to one layer of the neural
network, and its parameters are treated as learnable weights.
For example, it has been shown that parameter learning via
deep unfolding approach improves the performance in com-
pressed sensing [16].

In this paper, we investigate parameter scheduling based on
the deep unfolding framework for image restoration in optical
analog circuits. As the target algorithm, we consider ADMM
and PDS with additive circuit noise discussed in [9]. In the
parameter learning via deep unfolding, the parameters to be
learned are allowed to vary across iterations to improve the
restoration accuracy. Although modifying parameters at each
iteration may be challenging in current optical hardware, it is
still valuable to assess how such scheduling affects restoration
accuracy when it is assumed to be feasible. Moreover, the in-
sights obtained from this evaluation can serve as a guideline for
the design and development of future optical signal processing
devices.

We assess the effectiveness of the proposed approach via
computer simulations. As a preliminary experiment, we first
trained the algorithm parameters using a single image to
verify the applicability of the deep-unfolding framework in
our setting. The results demonstrate that the restoration ac-
curacy is improved under the given condition. For the main
evaluation, we assessed the restoration accuracy for unknown
test images using parameters learned from multiple training
images. However, the performance gains obtained through this
learning process were limited. These results suggest that the
optimal parameter values may vary from image to image. We
also found that merely scheduling the parameters targeted in
this study—such as step sizes and regularization coefficients
for each iteration—is insufficient to achieve consistent im-
provements in restoration accuracy across different images.

II. PRELIMINARIES AND RELATED WORK

A. Optical Analog Circuits and Their Constraints

Optical analog circuits, which exploit photons as informa-
tion carriers, are currently being developed to execute opera-
tions such as matrix-vector multiplication with lower latency
and reduced power consumption [1]. The components of
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TABLE I: Estimated additive noise power for amplifiers with
different power gains [8]

Power Gain G Additive Noise Power

8 1.79× 10−8

16 3.84× 10−8

32 7.94× 10−8

64 1.61× 10−7

128 3.25× 10−7

256 6.53× 10−7

these circuits include signal splitters (SSs), adders, subtractors,
multipliers, attenuators, amplifiers, and delay elements. Among
these, the SS, adder, and subtractor can be realized using a
common optical device known as a beam splitter (BS) [8].

A BS has two input ports and two output ports. When a
complex signal α ∈ C is input to one port, the BS outputs
are 1√

2
α from the same-side port and 1√

2
α · e−jπ/2 from the

opposite-side port, where j is the imaginary unit. Because the
amplitude is reduced by 1/

√
2, each output carries half of the

input power. An SS can be implemented by combining a BS
with an appropriate phase shifter. Adders and subtractors are
also realized by cascading a BS with phase shifters; in these
operations, the output signal power is also halved.

Optical analog circuits are subject to structural constraints
that differ from those of their electronic counterparts. A key
challenge is the difficulty of implementing division by dynamic
variables in iterative algorithms. Furthermore, to compensate
for attenuation in components like adders and SSs, optical cir-
cuits require signal amplification, which inevitably introduces
additive noise.

The amount of noise introduced by amplification can be
estimated based on the amplification gain. The power spectral
density of amplified spontaneous emission (ASE) noise gen-
erated by an erbium doped fiber amplifier (EDFA) is given
by

GASE = F (G− 1)hµ, (1)

where F is the noise figure (NF), G is the power gain, h is
Planck’s constant, and µ is the frequency [17]. Assuming a
typical optical system operating at a wavelength of 1550 nm
and a signal bandwidth of 10GHz, the added ASE noise
power [8] is

GASE × 10GHz = (G− 1) · 2.56× 10−9. (2)

Table I summarizes the estimated additive noise power for
different power gains G.

B. Image Restoration with Total Variation Regularization

Image restoration aims to estimate an original clear image
x∗ ∈ RN from degraded observation

y = Ax∗ + e ∈ RM , (3)

where A is a degradation matrix and e is observation noise.
A fundamental approach for image restoration is solving the

total variation (TV) regularized optimization problem given by

minimize
x∈RN

{
1

2
∥Ax− y∥22 + λ∥Dx∥1,2

}
, (4)

where the first term is the data fidelity term and the second
is the TV regularization term with parameter λ > 0 [18].
TV is a measure of an image’s smoothness and calculated
as the sum of the differences between its adjacent pixels.
The TV regularization term ∥Dx∥1,2 is a mixed ℓ1,2-norm
that promotes group sparsity in the image gradient, thereby
suppressing noise while preserving sharp edges.

The optimization problem (4) can be solved with several
proximal splitting algorithms such as ADMM [10], [11] and
PDS [12], [13]. As derived in [9], the update equations of
ADMM for (4) are given by

xk+1 =

(
A⊤A+

1

γ
D⊤D

)−1 (
A⊤y +

1

γ
D⊤(zk − vk)

)

(5)
zk+1 = proxγλ∥·∥1,2

(Dxk+1 + vk) (6)

vk+1 = vk +Dxk+1 − zk+1 (7)

while the updates of PDS are expressed as

xk+1 = xk − γ1
(
A⊤(Axk − y) +D⊤vk

)
(8)

zk+1 = vk + γ2D(2xk+1 − xk) (9)
vk+1 = zk+1 − proxλ∥·∥1,2

(zk+1). (10)

Here, k denotes the iteration index. For a function g and a
scalar γ > 0, the proximal operator of γg is defined as

proxγg(x) := arg min
u∈RN

{
g(u) +

1

2γ
∥x− u∥22

}
. (11)

The proximal operator of the mixed ℓ1,2-norm [19] is a group-
wise scaled soft-thresholding function as

[proxγλ∥·∥1,2
(z)]g = max

{
1− γλ

∥zg∥2
, 0

}
zg, (12)

where [proxγλ∥·∥1,2
(z)]g is the subvector of proxγλ∥·∥1,2

(z)
corresponding to group g. Here, the indeces of the vector are
partitioned into N non-overlapping groups, which correspond
to the horizontal and vertical differences at each pixel. The
update equations of ADMM involve a matrix inversion in (5),
while the equations of PDS do not. It should be noted that the
proximal operators involve divisions that depend on variable
values. In this paper, we assume that the proximal operators
are computed accurately in electronic circuits and focus on the
impact of circuit noise as in [9].

C. Image Restoration in Optical Analog Circuits

The main challenges in implementing image restoration
on optical analog circuits are avoiding division by dynamic
variables and evaluating the impact of circuit noise introduced
by signal amplification. In ADMM, the matrix inversion re-
quired in the x-update step can be pre-computed, and hence
division by dynamic variables in the iterative computation can
be avoided. PDS does not involve matrix inversion. Therefore,
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Algorithm 1 ADMM considering circuit noise [9]

Require: z0,v0, γ > 0, λ > 0
1: while stopping criterion is not met do
2: xk+1 = (A⊤A+ 1

γD
⊤D)−1(A⊤y+ 1

γD
⊤(zk −vk))

3: zk+1 = proxγλ∥·∥1,2
(Dxk+1 + vk + n256

k )

4: vk+1 = Dxk+1 + vk + n256
k − zk+1

5: k ← k + 1
6: end while

Ensure: xk

Algorithm 2 PDS considering circuit noise [9]

Require: x0,v0, γ1 > 0, γ2 > 0, λ > 0
1: while stopping criterion is not met do
2: xk+1 = (I−γ1A

⊤A)(xk+n32
k )+γ1A

⊤y−γ1D
⊤vk

3: zk+1 = vk + n16
k + γ2D(2xk+1 + n2

k − xk) + n256
k

4: vk+1 = zk+1 − proxλ∥·∥1,2
(zk+1)

5: k ← k + 1
6: end while

Ensure: xk

the primary concern is the impact of additive noise introduced
by amplifiers within optical analog circuits.

In the ADMM-based optical analog circuit configuration, an
optical amplifier with a gain of 256 is required to compensate
for signal attenuation (see [9] for details). This amplification
adds noise n256

k ∈ R2N at each iteration. Here, the superscript
on the noise nk denotes the gain of the amplifier. The
signal after passing through the optical amplifier becomes
Dxk+1 + vk + n256

k . The algorithm incorporating this noise
model is given as Algorithm 1. It should be noted that the
update equation for xk includes multiplication by 1

γ . If 1
γ is

greater than 1, i.e., γ < 1, the signal is amplified and, additive
noise corresponding to the amplification factor of 1

γ is added.
In the PDS-based optical analog circuit configuration, mul-

tiple optical amplifiers with different gains are used (see [9]
for details). Therefore, each time the signal passes through an
optical amplifier with a different gain, additive noise vectors
n256

k ,n32
k ,n16

k ,n2
k ∈ R2N are added accordingly. The PDS-

based image restoration algorithm that considers such circuit
noise is shown in Algorithm 2. Note that the update equations
for xk and zk include multiplications by γ1 and γ2, respec-
tively. If γ1 or γ2 is greater than 1, the signal is amplified and
the corresponsing noise is added.

Simulation results in [9] demonstrate that both ADMM and
PDS are capable of denoising images even in the presence
of additive circuit noise. Furthermore, ADMM achieves better
restoration accuracy than PDS, suggesting that ADMM is more
robust to noise introduced by optical amplification.

III. PARAMETER TRAINING VIA DEEP UNFOLDING FOR
ADMM AND PDS IN OPTICAL ANALOG CIRCUITS

The performance of image restoration algorithms heavily
depends on the algorithm parameters. In particular, parame-
ters that vary across iterations have the potential to improve

(a) Signal flow graph of an
iterative algorithm.

(b) Signal flow graph unfolded over
time.

Fig. 1: Conceptual diagram of signal flow graphs in deep
unfolding.

restoration accuracy. However, identifying their optimal values
remains a significant challenge. This chapter begins with an
overview of deep unfolding [14], [15] and incremental training,
followed by a detailed description of our study. Specifically
we describe the application of deep unfolding to ADMM and
PDS, with a focus on their implementation in optical analog
circuits.

A. Overview of Deep Unfolding

The performance of many iterative algorithms depends on
their internal parameters. While tuning these parameters for
each iteration can improve accuracy, finding their optimal
values is often challenging. Deep unfolding is an approach
developed to address this issue by learning these parameters
directly from data.

Deep unfolding is an approach that interprets iterative al-
gorithms, such as ADMM or PDS, as a feed-forward neural
network by “unfolding” them along the time axis (i.e., the
iteration axis). Fig. 1(a) shows the signal flow graph of a
generic iterative algorithm, and Fig. 1(b) illustrates its unfolded
counterpart. The sub-processes A, B, and C in Fig. 1(a)
represent the computational operations within each iteration. In
the unfolded signal flow graph in Fig. 1(b), each iteration cor-
responds to one layer of the network, and the parameters within
the algorithm are treated as learnable weights. If the operations
within these sub-processes are differentiable, these parameters
can be learned using standard deep learning techniques, such as
backpropagation and stochastic gradient descent. This enables
the acquisition of algorithm parameters that are tailored to
specific problems or datasets, thereby improving performance.

B. Incremental Training for Deep Unfolded Models

It is well known that deep neural networks are suscep-
tible to vanishing and exploding gradient problems during
training [20]. These issues arise during backpropagation, as
gradients are propagated through multiple layers. The repeated
multiplication of gradient terms can cause their magnitudes to
shrink toward zero or grow uncontrollably, resulting in unstable
learning dynamics.

2025 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) 421



In deep unfolding models, the number of algorithm itera-
tions corresponds to the depth of the network. Consequently,
attempting to train a model with a deep structure resulting
from a large number of iterations presents a risk of gradient
instability. To address this issue, an approach known as in-
cremental training can be employed [16]. In this strategy, the
depth of the network is gradually increased as the training
progresses, starting from a shallow configuration. This helps
to stabilize the learning process in its early stages and improve
convergence.

C. Proposed Parameter Learning Method

This study applies deep unfolding to learn the parameters
of ADMM and PDS, with a particular emphasis on their
implementation on optical analog circuits. Given the physical
constraints on optical analog circuits, we need to preserve
the fundamental structures of these algorithms and assume
circuit configurations that are physically feasible. To balance
hardware feasibility with the benefits of deep unfolding, we
restrict the learnable parameters to a small set, such as step
sizes and regularization coefficients.

While the original algorithms assume fixed values for pa-
rameters such as γ and λ across iterations, we allow them
to vary at each iteration to potentially improve performance.
Specifically, the learnable parameters are given by (γk, λk)
for ADMM and (γk

1 , γ
k
2 , λ

k) for PDS, where k (k = 0, 1, . . . )
denotes the iteration index. The network parameters are trained
by minimizing the mean squared error (MSE) loss function L.
This loss is averaged over all images in the dataset and is
defined as

L =
1

SN

S∑

s=1

∥∥∥x̂(K)
s − x∗

s

∥∥∥
2

2
(13)

where S is the total number of images in the dataset, N

is the number of pixels in a single image, x̂
(K)
s is the

restored vector for the s-th image after K iterations, and x∗
s

is the corresponding ground truth vector. To account for the
characteristics of optical circuits, our model incorporates the
effects of additive noise from amplifiers during both training
and evaluation. The parameters are updated by minimizing the
loss function using the Adam optimizer [21], with gradients
computed via backpropagation through the unfolded iterations.
Furthermore, we adopt the incremental training strategy to
achieve effective and stable learning.

IV. SIMULATION RESULTS

A. Simulation Setup

In this paper, we consider denoising problems for simplicity,
where the observation matrix A is an identity matrix. We use
30 grayscale images of size 256 × 256 pixels as the original
images. This dataset was partitioned into a training set of 10
images used to train the model, a validation set of 10 images
for hyperparameter tuning (such as the learning rate), and
a test set of 10 images for final performance evaluation. In
light of current developments in optical analog circuits, which

are expected to support computations in the range of tens
to hundreds of dimensions, we divide each image into 256
non-overlapping patches of 16 × 16 pixels. The restoration
algorithm is then applied to each patch individually.

The observed images are generated by adding Gaussian
noise with a mean of 0 and a standard deviation of 10/255
to the original images. The initial values for both ADMM
and PDS are set to x0 = y (the observed image), z0 = 0,
and v0 = 0. The additive noise from optical amplifiers is
modeled as zero-mean Gaussian noise, corresponding to the
gain of each amplifier as in TABLE I. Moreover, considering
that the typical signal power in optical fiber transmission is
approximately 0.001, the variance used in the simulation is
set to be 1000 times larger than the values in TABLE I.
The maximum number of iterations for ADMM and PDS is
set to 30, and we employ the incremental training approach
described in Section III-B for training. At each stage of the
incremental training, the epoch size is set to one. The initial
values for the learnable parameters were adopted from the
fixed parameters that demonstrated the best performance in
preliminary simulations. Specifically, we set γ = 20, λ = 0.03
for ADMM, and γ1 = 0.1, γ2 = 5.0, λ = 0.03 for PDS.

B. Simulation Results and Discussion

First, as a preliminary experiment, we learned the algorithm
parameters for a single image and evaluated the restoration ac-
curacy on that same image. In this case, the learned parameters
achieved a higher PSNR (e.g., 30.1 dB) compared to the PSNR
achieved using the best manually-tuned fixed parameters (e.g.,
29.8 dB). This result confirms that specializing the parameters
for a specific image can improve its restoration accuracy.

Next, to evaluate the generalization performance, we trained
the parameters using multiple training images and evaluated
the restoration accuracy on unseen test images. In the simula-
tions, we set the learning rate to 10−5. We observed that using
a larger learning rate caused the training process to diverge.

Fig. 2 shows the PSNR values of ADMM both learned
and fixed parameters. The figure indicate that the learned
parameters achieve a PSNR comparable to that of the manually
tuned fixed parameters, which represent the best performance
obtained through exhaustive search. Fig. 3 shows the learned
parameter values against the number of iterations. Specifically,
Fig. 3(a) shows the value of γk, while Fig. 3(b) shows the
value of λk. It is observed that both parameters do not deviate
significantly from their initial settings throughout the iterations.

Fig. 4 shows the PSNR values of PDS both learned and
fixed parameters. The figure indicates that the final accuracy
is almost equivalent to that achieved with the best fixed
parameters, and significant performance improvement cannot
be obtained through parameter learning. Fig. 5 shows the
learned parameters for the PDS algorithm, i.e., γk

1 , γk
2 , and

λk. As with the ADMM parameters, these values also show
no significant deviation from their initial settings throughout
the iterations.
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Fig. 2: Restoration accuracy with learned ADMM parameters.

(a) Value of γk at each iteration.

(b) Value of λk at each iteration.

Fig. 3: Learned values for each parameter in ADMM.

These results indicate that making the parameters variable
at each iteration through learning did not improve the perfor-
mance of ADMM and PDS compared to using the optimal
fixed parameters. In other words, considering the implemen-
tation cost associated with the increased circuit complexity
required for dynamic parameter changes, using good fixed
parameters appears to be a more practical approach that offers
a better balance between performance and ease of implemen-
tation.

0 3 6 9 12 15 18 21 24 27 30
Iteration k

29.0
29.5
30.0
30.5
31.0
31.5
32.0
32.5

PS
NR

 (d
B)

with learned-parameters
with fixed-parameters

Fig. 4: Restoration accuracy with learned PDS parameters.

(a) Value of γk
1 at each iteration.

(b) Value of γk
2 at each iteration.

(c) Value of λk at each iteration.

Fig. 5: Learned values for each parameter in PDS.

V. CONCLUSION

In this study, we investigated parameter scheduling of
ADMM and PDS for image restoration, taking into account the
characteristics of optical analog circuits, where signal amplifi-
cation introduces additive noise. Specifically, we employed a
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deep unfolding framework to learn iteration-dependent param-
eters, aiming to understand the impact of dynamic parameter
scheduling on image restoration performance. Our simulation
results show that the variable parameters obtained via deep
unfolding achieved comparable performance to that of the
best fixed parameters, which were optimized manually before-
hand. These results suggest that, for the denoising problem
addressed in this paper, a simpler approach using optimal
fixed parameters may be more practical, particularly given
the implementation cost associated with the increased circuit
complexity required for dynamic parameter changes.

Future work includes applying this approach to other image
restoration tasks beyond denoising, such as deblurring and
super resolution, and investigating methods for implementing
the proximal operators in electronic circuits.
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