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Abstract—In this paper, we propose an algorithm to re-
construct a binary vector from its possibly underdetermined
linear measurements. Taking advantage of the idea of the
approximate message passing (AMP) algorithm for compressed
sensing, we firstly formulate a probability distribution associated
with the sum-of-absolute-value (SOAV) optimization. Then, by
approximating the sum-product algorithm for the marginaliza-
tion of the distribution, we obtain a low-complexity iterative
algorithm, called discreteness-aware AMP (DAMP). We evaluate
the performance of DAMP analytically via state evolution and
derive a condition for the exact reconstruction with DAMP.
Moreover, we also provide Bayes optimal DAMP for the binary
vector reconstruction, which gives the minimum mean-square-
error at each iteration in the large system limit. Simulation
results show that DAMP can reconstruct the binary vector from
underdetermined linear measurements and its performance can
be well predicted by our theoretical results.

I. INTRODUCTION

The reconstruction of a discrete-valued vector from its
possibly underdetermined linear measurements is an important
problem in signal processing. Since signals in digital commu-
nications are generally discrete-valued, there are many poten-
tial applications of the discrete-valued vector reconstruction
in communications systems, such as multiuser detection [1]–
[5], signal detection for overloaded multiple-input multiple-
output (MIMO) systems [6], and faster-than-Nyquist signal-
ing [7], [8]. The optimal maximum likelihood (ML) approach
for the problem results in the combinatorial optimization
problem and hence the computational complexity increases
exponentially along the problem size. We thus need a low-
complexity algorithm for the reconstruction, especially in the
large-scale problem.

For the reconstruction of the discrete-valued vector, the
regularization-based method and the transform-based method
have been proposed [9]. These methods borrow the idea
from compressed sensing [10], [11] in the formulation of the
reconstruction leading to convex optimization problems. The
optimization problems can be solved by interior point methods
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as the standard linear programming in the absence of observa-
tion noise. However, it may have a prohibitive computational
complexity in large-scale systems. As the theoretical analysis,
the required number of measurements has been derived for
the binary vector reconstruction with the regularization-based
method. For the transform-based method, a more general
theorem has been proved for the uniformly distributed discrete-
valued vector. For the vector with non-uniform distribution,
however, no analytical result has been obtained.

Meanwhile, sum-of-absolute-value (SOAV) optimization
has also been proposed for the discrete-valued vector re-
construction [12]. The SOAV optimization is similar to the
regularization-based method and they are equivalent when
the unknown vector is uniformly distributed. Since interior
point methods for the SOAV optimization may have a huge
computational complexity for large-scale problems, we have
proposed a low-complexity algorithm for the SOAV optimiza-
tion, referred to as discreteness-aware approximate message
passing (DAMP) [13]. The DAMP algorithm is derived by
employing the approach of the approximate message passing
(AMP) algorithm [14], [15], which has been originally pro-
posed for compressed sensing. The performance of DAMP has
been analytically investigated via the state evolution frame-
work [14], [16] and the required number of measurements for
the perfect reconstruction has also been derived. The theoret-
ical result for the reconstruction of the uniformly distributed
vector coincides with the analysis of the regularization-based
method and the transform-based method. In [13], however, the
elements of the unknown discrete-valued vector is assumed to
be symmetrically distributed.

In this paper, we propose the DAMP algorithm for the
reconstruction of a binary vector whose distribution is possibly
asymmetric. By this extension, for example, we can apply the
DAMP algorithm to image processing for binary images [12]
even when the number of black pixels is not equal to that
of white pixels. In the derivation of the proposed algorithm,
we firstly construct a probability distribution associated with
the SOAV optimization, which is formulated differently from
that in [13] to take account of the asymmetry. Next, we
build the sum-product belief propagation algorithm [17], [18]
over the corresponding factor graph. We then take the large
system limit and approximate the message update rules to
obtain a low-complexity iterative algorithm. The resultant
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DAMP algorithm has basically the same form as that of the
AMP algorithm for compressed sensing except for their soft
thresholding functions. We evaluate the performance of DAMP
analytically via the state evolution framework [14], [16] and
derive a condition on a parameter and the required number of
measurements for the exact reconstruction. Moreover, based
on the state evolution, we also derive Bayes optimal DAMP,
which gives the minimum mean-square-error (MSE) at each
iteration in the large scale limit. Simulation results show that
the proposed DAMP can reconstruct the binary vector from
its underdetermined linear measurements and the performance
can be well predicted by the theoretical result obtained with
state evolution.

In the rest of the paper, we use the following notations. We
represent the transpose by (·)T, the vector whose elements are
all 1 by 1, and the vector whose elements are all 0 by 0. For
a vector v = [v1 · · · vN ]T ∈ RN , we define the ℓ1 and ℓ2

norms of v as ∥v∥1 =
∑N

j=1 |vj | and ∥v∥2 =
√∑N

j=1 v
2
j ,

respectively. We represent the mean of the elements of v by
⟨v⟩ = 1

N

∑N
j=1 vj . For a function h : RN → R, the proximity

operator [19] of h is defined as

proxh(v) = arg min
s∈RN

{
h(s) +

1

2
∥s− v∥22

}
. (1)

We represent the sign function by sgn(·).

II. PROPOSED DISCRETENESS-AWARE AMP
In this section, we briefly review the SOAV optimiza-

tion [12] and provide the proposed DAMP with the similar
approach to that of the AMP algorithm for compressed sens-
ing [14].

A. SOAV optimization

The SOAV optimization is a technique to reconstruct a bi-
nary vector such as b = [b1 · · · bN ]T ∈ {r1, . . . , rL}N ⊂ RN

from its linear measurements

y = Ab, (2)

where y = [y1 · · · yM ]T ∈ RM and

A =

 a1,1 · · · a1,N
...

. . .
...

aM,1 · · · aM,N

 ∈ RM×N . (3)

In this paper, we consider the binary case b ∈ {r1, r2}N (r1 <
r2) with the known distribution Pr(bj = r1) = p1 and
Pr(bj = r2) = p2 (= 1 − p1) (j = 1, . . . , N). Taking
advantage of the fact that b − r11 and b − r21 have ap-
proximately p1N and p2N zero elements, respectively, the
SOAV optimization solves the following problem to obtain
the estimate of b.

b̂ =arg min
s∈RN

(q1∥s− r11∥1 + q2∥s− r21∥1)

subject to y = As. (4)

In the original SOAV optimization [12], the coefficients
q1, q2 ≥ 0 are fixed as q1 = p1 and q2 = p2. The

Fig. 1. Factor graph of (5): N circles denote the variable nodes
s1, . . . , sN . N squares in the upper side are the function nodes
exp {−β (q1|sj − r1|+ q2|sj − r2|)} (j = 1, . . . , N). M squares in the
lower side are the function nodes δ

(
yθ =

∑N
i=1 aθ,isi

)
(θ = 1, . . . ,M).

regularization-based method [9] solves (4) with q1 = q2 = 1.
However, the validity of these selections has not been verified.
We thus consider the coefficients as parameters to be optimized
before solving (4), as described in Sec. III-B. Note that we can
handle the case of the asymmetric distribution with p1 ̸= p2
by using coefficients q1 ̸= q2 in (4), while [13] considers
only the case with symmetric distributions. While we consider
only the noise-free case (2) in this paper, we can extend the
DAMP algorithm for the noisy case as in the sparse vector
reconstruction [15].

B. Formulation of probability distribution

The derivation of DAMP begins with the sum-product
algorithm for a probability distribution corresponding to the
SOAV optimization (4). We first consider the following joint
probability distribution

µ(s) ∝
N∏
j=1

exp {−β (q1|sj − r1|+ q2|sj − r2|)}

·
M∏
θ=1

δ

(
yθ =

N∑
i=1

aθ,isi

)
, (5)

where β > 0 and δ
(
yθ =

∑N
i=1 aθ,isi

)
represents the Dirac

distribution on the hyperplane yθ =
∑N

i=1 aθ,isi. Note that,
as β → ∞, the mass of the distribution concentrates on the
solution of (4). We obtain the marginal distribution of (5)
via belief propagation with the sum-product algorithm [18].
The message passing procedure over the corresponding factor
graph (See Fig. 1) can be written as
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νt+1
j→θ(sj) ∝ exp {−β (q1|sj − r1|+ q2|sj − r2|)}

·
∏
ζ ̸=θ

ν̂tζ→j(sj), (6)

ν̂tθ→j(sj) ∝
∫

δ

(
yθ =

N∑
i=1

aθ,isi

)∏
k ̸=j

νtk→θ(sk)ds\j , (7)

where t is the iteration index and the integral
∫
(·)ds\j denotes

the marginalization over all the variables except for sj . Here,
νt+1
j→θ(sj) is the message from the variable node sj to the

function node δ
(
yθ =

∑N
i=1 aθ,isi

)
, and ν̂tθ→j(sj) is the

message from the function node to the variable node.

C. DAMP

Then, we consider the large system limit (M,N → ∞ with
fixed M/N = ∆) and large β limit (β → ∞) to approximate
the message update rule (6), (7). In the derivation, we assume
aθ,j ∈ {1/

√
M,−1/

√
M} to simplify the calculation as

in [15]. This assumption is not very crucial because we can
derive the same algorithm if A is composed of i.i.d. variables
with zero mean and variance 1/M . As in the derivation in [15],
the message update rules (6), (7) can be reduced to

xt+1 = η(ATzt + xt, τ̂ t), (8)
zt = y −Axt

+
1

∆
zt−1⟨η′(ATzt−1 + xt−1, τ̂ t−1)⟩, (9)

τ̂ t =
τ̂ t−1

∆
⟨η′(ATzt−1 + xt−1, τ̂ t−1)⟩, (10)

where xt is the estimate of b at the tth iteration. The function
η is given by

η(u, c) = proxcJ(u), (11)

where J(s) = q1∥s− r11∥1 + q2∥s− r21∥1 is the objective
function in (4). By the direct calculation described in [5], the
jth element of proxcJ(u) is written as

[proxcJ(u)]j =



uj − cQ1 (uj < r1 + cQ1)

r1 (r1 + cQ1 ≤ uj < r1 + cQ2)

uj − cQ2 (r1 + cQ2 ≤ uj < r2 + cQ2)

r2 (r2 + cQ2 ≤ uj < r2 + cQ3)

uj − cQ3 (r2 + cQ3 ≤ uj)

,

(12)

where Q1 = −q1− q2, Q2 = q1− q2 and Q3 = q1+ q2. Since
[proxcJ(u)]j is a function of only uj , the function η(u, c) is
a element-wise function of u. The jth element of η′(u, c) is
defined as [η′(u, c)]j = 0 if [η(u, c)]j ∈ {r1, r2}, otherwise
[η′(u, c)]j = 1.

It should be noted that the update equations of DAMP (8)–
(10) are basically the same as those of the AMP algorithm for
compressed sensing [15]. The only difference is the function
η(u, c), which is the soft thresholding function [η(u, c)]j =
sgn(uj)max{|uj | − c, 0} in the case of the sparse vector
reconstruction. Hence, the function η(u, c) given by (11)

and (12) can be considered as the soft thresholding function
for the binary vector reconstruction. Since (8)–(10) can be
computed only with additions of vectors and multiplications
of a matrix and a vector, the computational complexity of the
algorithm is O(MN) per iteration, which is lower than that
of internal point methods O(MN2).

In the derivation of DAMP, we can also take a slightly
different approach by considering the threshold level τ̂ t as
the parameter to be optimized. One of the choices is to
replace τ̂ t with τ

σt√
∆

as in the AMP algorithm for com-

pressed sensing [14], where τ (≥ 0) is the parameter and
σ2
t = ∥xt − b∥22/N is the MSE of the estimate at the tth

iteration. In this approach, (8) and (9) are rewritten as

xt+1 = η

(
ATzt + xt, τ

σt√
∆

)
, (13)

zt = y −Axt

+
1

∆
zt−1

⟨
η′
(
ATzt−1 + xt−1, τ

σt−1√
∆

)⟩
. (14)

Since the true solution b is unknown in practice, we use the
alternative value for σ2

t , e.g., σ̂2
t = ∥zt∥22/N used in [20]. We

consider this parameterized DAMP (13), (14) henceforth.

III. STATE EVOLUTION FOR DAMP

In this section, we provide a theoretical analysis of DAMP
with state evolution framework [14], [16]. By using state
evolution, we give the required number of measurements
for the perfect reconstruction and the parameter of the soft
thresholding function minimizing the number of measurements
in the large system limit. Moreover, we provide the Bayes
optimal DAMP on the basis of state evolution.

A. State evolution

State evolution is a framework to analyze the performance
of the AMP algorithm. In the large system limit, the MSE
σ2
t = ∥xt−b∥22/N of xt can be predicted via state evolution.

Similarly to the case of compressed sensing, the state evolution
formula for the proposed DAMP (13), (14) is written as

σ2
t+1 = Ψ(σ2

t ) (15)

under some assumptions, where

Ψ(σ2) = E

[{
η

(
X +

σ√
∆
Z, τ

σ√
∆

)
−X

}2
]
. (16)

The random variable X has the same distribution as that of the
unknown discrete variable, i.e., Pr(X = r1) = p1,Pr(X =
r2) = p2, and Z is the standard Gaussian random variable
independent of X . Since Ψ(0) = 0, the sequence {σ2

t }t=0,1,...

with the recursion (15) converges to zero if Ψ(σ2) is concave
and its derivative at σ2 = 0 is smaller than one, i.e.,
dΨ

d(σ2)

∣∣∣∣
σ↓0

< 1. In fact, the condition
dΨ

d(σ2)

∣∣∣∣
σ↓0

< 1 results

in Ψ(σ2) < σ2 and hence we have σ2
t+1 = Ψ(σ2

t ) < σ2
t . In

this case, DAMP reconstructs the unknown vector b perfectly.
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B. Condition for perfect reconstruction by DAMP

To obtain the condition for the perfect reconstruction, we

evaluate
dΨ

d(σ2)

∣∣∣∣
σ↓0

analytically. By the direct calculation,

dΨ

d(σ2)

∣∣∣∣
σ↓0

can be obtained as

dΨ

d(σ2)

∣∣∣∣
σ↓0

= D(U1, U2, U3) (17)

:=
p1
∆

{U1ϕ (U1)− U2ϕ (U2)

+
(
1 + U2

1

)
Φ(U1) +

(
1 + U2

2

)
(1− Φ(U2))

}
+

p2
∆

{U2ϕ (U2)− U3ϕ (U3)

+
(
1 + U2

2

)
Φ(U2) +

(
1 + U2

3

)
(1− Φ(U3))

}
,

(18)

where Uℓ = τQℓ (ℓ = 1, 2, 3). Here, ϕ(z) = 1√
2π

exp
(
− z2

2

)
and Φ(z) =

∫ z

−∞ ϕ(z′)dz′ are the probability density func-
tion and the cumulative distribution function of the standard
Gaussian distribution, respectively. Since we can choose any
q1, q2 ≥ 0 in (4) and τ ≥ 0, we can minimize (18) with respect
to U1, U2, and U3 as

Dmin = min
U1,U2,U3

D(U1, U2, U3) subject to U1 ≤ U2 ≤ U3.

(19)

We can show that U1ϕ(U1) + (1 + U2
1 )Φ(U1) in (18) is the

monotone increasing function of U1 and −U3ϕ(U3) + (1 +
U2
3 )(1 − Φ(U3)) is the monotone decreasing function of U3.

Hence, the optimal values of U1 and U3 are U opt
1 = −∞ and

U opt
3 = ∞, respectively. The minimization problem (19) can

be rewritten as

Dmin = min
U2∈R

[p1
∆

{
−U2ϕ (U2) +

(
1 + U2

2

)
(1− Φ(U2))

}
+
p2
∆

{
U2ϕ (U2) +

(
1 + U2

2

)
Φ(U2)

}]
. (20)

Since the objective function in (20) is the convex function
of U2, we can obtain the unique minimizer U opt

2 and the

corresponding minimum value Dmin of
dΨ

d(σ2)

∣∣∣∣
σ↓0

. From (12),

the soft thresholding function with the threshold c = τ σ√
∆

and
the optimal parameters of Uℓ = τQℓ (ℓ = 1, 2, 3) is written
as

ηS(u) =

r1

(
u < r1 +

σ√
∆
U opt
2

)
u− σ√

∆
U opt
2

(
r1 +

σ√
∆
U opt
2 ≤ u < r2 +

σ√
∆
U opt
2

)
r2

(
r2 +

σ√
∆
U opt
2 ≤ u

) .

(21)

-3 -2 -1 0 1 2 3

u

-3

-2

-1

0

1

2

3

η
(u
)

η
S(u) (soft thresholding)

η
B(u) (Bayes optimal)

σ = 0.5

σ = 0.1

Fig. 2. Examples of ηS(u) and ηB(u) (r1 = −1, r2 = 1, p1 = 0.2, p2 =
0.8,∆ = 0.7, and σ = 0.1, 0.5)
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1

p
1 Failure

Region

Success

Region

Fig. 3. Phase transition of DAMP with the soft thresholding function ηS(u)
for binary vector

Fig. 2 shows an example of the soft thresholding function
ηS(u) in the case with r1 = −1, r2 = 1, p1 = 0.2, p2 =
0.8,∆ = 0.7, and σ = 0.1, 0.5.

The DAMP algorithm with ηS(u) provides the perfect re-
construction in the large system limit if Dmin < 1. Fig. 3 shows
the phase transition line of DAMP, where Dmin = 1. Note
that the line is the boundary between the success and failure
regions of DAMP in the large system limit. In the left region
of the curve, the MSE of the estimate obtained by DAMP does
not converge to zero. In the right region, DAMP can provide
the perfect reconstruction of b. For example, the figure shows
that DAMP requires at least N/2 observations to accurately
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Ψ
(σ
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Ψ
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Ψ
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Fig. 4. Examples of ΨS(σ2) and ΨB(σ2) (r1 = 0, r2 = 1, p1 = 0.7, p2 =
0.3, and ∆ = 0.6)

reconstruct an N -dimensional uniformly distributed binary
vector. This result coincides with the theoretical analysis
for the regularization-based method and the transform-based
method [9]. Moreover, our analysis also provides the required
number of measurements for the asymmetric distribution with
p1 ̸= 0.5, which has not been obtained in [9]. It should be
noted that Dmin in (20) is independent of r1 and r2, and hence
the phase transition line in Fig. 3 is identical for any r1 and
r2.

We confirm that the function Ψ(σ2) in (15) is concave
when we use the optimal soft thresholding function ηS(u). The

second derivative of ΨS(σ2) = E

[{
ηS
(
X + σ√

∆
Z
)
−X

}2
]

can be obtained as

d2ΨS

d(σ2)2

=

√
∆

2σ5
(r1 − r2)

3

{
p1ϕ

(√
∆

σ
(−r1 + r2) + U opt

2

)

+p2ϕ

(√
∆

σ
(−r2 + r1) + U opt

2

)}
,

(22)

which is negative because r1 < r2, and hence ΨS(σ2) is
concave. Fig. 4 shows an example of ΨS(σ2) in the case with
r1 = 0, r2 = 1, p1 = 0.7, p2 = 0.3, and ∆ = 0.6. We can see
that ΨS(σ2) is concave and ΨS(σ2) ≤ σ2 for all σ2 ≥ 0.

C. Bayes optimal DAMP

In the DAMP algorithm (13), (14), we can use another func-
tion as η instead of the soft thresholding function (12), (21).
The state evolution formula (15) can also be used for Lipschitz
continuous functions other than the soft thresholding function.
In the literature of compressed sensing, the AMP algorithm is

called Bayes optimal if the function η̃ minimizing

Ψ̃(σ2) = E

[{
η̃

(
X +

σ√
∆
Z

)
−X

}2
]

(23)

is used [20], [21]. Note that the minimizer ηB(u) of (23) can
be written as the conditional expectation [16], i.e.,

ηB(u) = E

[
X

∣∣∣∣X +
σ√
∆
Z = u

]
. (24)

Although it is difficult in general to analytically calculate
the optimal function ηB(u), we can obtain ηB(u) for the Bayes
optimal DAMP because the distribution of X is discrete in our
problem. We consider Ψ̃(σ2) as a functional of the function
η̃(u) and rewrite (23) as

Ψ̃(σ2)

=

√
∆

σ

[
p1

∫ ∞

−∞
{η̃ (u)− r1}2 ϕ

(√
∆

σ
(u− r1)

)
du

+p2

∫ ∞

−∞
{η̃ (u)− r2}2 ϕ

(√
∆

σ
(u− r2)

)
du

]
.

(25)

The variation is given by

dΨ̃

dη̃
=

2
√
∆

σ

[
p1 {η̃ (u)− r1}ϕ

(√
∆

σ
(u− r1)

)

+p2 {η̃ (u)− r2}ϕ

(√
∆

σ
(u− r2)

)]
. (26)

By solving
dΨ̃

dη̃
= 0, the optimal function ηB(u) can be

obtained as

ηB (u) =
p1r1ϕ

(√
∆
σ (u− r1)

)
+ p2r2ϕ

(√
∆
σ (u− r2)

)
p1ϕ

(√
∆
σ (u− r1)

)
+ p2ϕ

(√
∆
σ (u− r2)

) .

(27)

As a special case, when r1 = −1, r2 = 1 and p1 = p2 =
0.5, (27) can be reduced to

ηB (u) = tanh

(
∆

σ2
u

)
, (28)

which has been proposed for the code division multiple access
(CDMA) multiuser detection [2], [22]. In Fig. 2, we show
an example of ηB(u) as well as ηS(u) in the case with
r1 = −1, r2 = 1, p1 = 0.2, p2 = 0.8,∆ = 0.7, and σ =
0.1, 0.5. We can see that the form of ηB(u) changes drastically
against σ compared to ηS(u). We also show an example of

ΨB(σ2) = E

[{
ηB
(
X + σ√

∆
Z
)
−X

}2
]

in Fig. 4 as well

as ΨS(σ2). The sequence of the MSE {σ2
t }t=0,1,... obtained

by σ2
t+1 = ΨB(σ2

t ) converges to zero if Dmin < 1, because
σ2
t+1 = ΨB(σ2

t ) ≤ ΨS(σ2
t ) < σ2

t in that case. However,
since ΨB(σ2) is not concave unlike ΨS(σ2), it is difficult
to obtain the necessary condition analytically for the perfect
reconstruction by Bayes optimal DMAP.
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Fig. 5. State evolution and empirical performance (r1 = −1, r2 = 1, p1 =
0.2, p2 = 0.8, and ∆ = 0.5)
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Fig. 6. State evolution and empirical performance (r1 = 1, r2 = 4, p1 =
0.7, p2 = 0.3, and ∆ = 0.6)

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DAMP via computer simulations. In the simulations, the
sensing matrix A ∈ RM×N is composed of i.i.d. Gaussian
variables with zero mean and variance 1/M . The initialization
of the algorithm is given by x−1 = x0 = 0, z−1 = 0.

Figs. 5 and 6 show the prediction via state evolution and the
empirical MSE σ2

t = ∥xt − b∥22/N with DAMP obtained by
simulations. We set r1 = −1, r2 = 1, p1 = 0.2, p2 = 0.8,∆ =
0.5 in Fig. 5 and r1 = 1, r2 = 4, p1 = 0.7, p2 = 0.3,∆ = 0.6
in Fig. 6. We evaluate the performance for the different
problem sizes of N = 100, 500, 1000, and 1500. In the figures,
“soft thresholding” denotes the performance of DAMP with
the soft thresholding function ηS(u) and “Bayes optimal”
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Fig. 7. Recovery rate (b ∈ {0, 1}N , N = 1000)

denotes that of Bayes optimal DAMP with ηB(u). We can see
that Bayes optimal DAMP has much smaller MSE with less
number of iterations than DAMP with the soft thresholding
function. The figures also show that the prediction with state
evolution is close to the empirical performance in the large-
scale systems.

In Fig. 7, we empirically evaluate the rate of the success
recovery in the sense that σ2

t < 10−3 after t = 500 iterations.
The unknown vector is b ∈ {0, 1}N and N = 1000. The
vertical lines for each p1 correspond to the required ∆ obtained
from Fig. 3. In the large system limit, the left side of each
vertical line is the failure region and the right side is the
success region. For all p1, the recovery rate of DAMP with
soft thresholding rapidly increases around the corresponding
vertical line. We can also see that the recovery rate of Bayes
optimal DAMP is better than DAMP with soft thresholding.
It should be noted that the recovery rate is not equal to one
in the success region near the boundary. One reason is that
we restrict the maximum number of iterations as t = 500.
Another reason is that the problem size here is finite and not
large enough.

V. CONCLUSION

In this paper, we have proposed the algorithm for the
binary vector reconstruction, referred to as DAMP. We have
analytically evaluated the performance of DAMP and have de-
rived the condition for the perfect reconstruction with DAMP
via state evolution. Moreover, we have also provided Bayes
optimal DAMP, which gives much smaller MSE compared to
DAMP with the soft thresholding function. Numerical results
show that DAMP can reconstruct the binary vector from its
underdetermined linear measurements and the empirical per-
formance agrees well with our theoretical results. Future work
includes the extension of DAMP for the noisy observation
cases and its application to various communication systems.
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