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Abstract—In this paper, we propose a message passing-based
algorithm to reconstruct a discrete-valued vector whose elements
have a symmetric probability distribution. The proposed algo-
rithm, referred to as discreteness-aware approximate message
passing (DAMP), borrows the idea of the approximate message
passing (AMP) algorithm for compressed sensing. We analytically
evaluate the performance of DAMP via state evolution framework
to derive a required number of linear measurements for the
exact reconstruction with DAMP. The analysis also provides the
optimal parameter minimizing the required number of measure-
ments. Simulation results show that DAMP can reconstruct the
discrete-valued vector and its performance agrees well with our
theoretical results via the state evolution.

Index Terms—approximate message passing, state evolution,
sum-of-absolute-value optimization, discrete-valued vector recon-
struction.

I. INTRODUCTION

Many problems in signal processing can be regarded as the
reconstruction of a discrete-valued vector from its possibly
underdetermined linear measurements. For example, since we
generally use discrete-valued signals in digital communica-
tions systems, there are many potential applications of the
discrete-valued vector reconstruction, including multiuser de-
tection in machine-to-machine communications [1], signal de-
tection for massive overloaded multiple-input multiple-output
(MIMO) systems [2], and faster-than-Nyquist signaling [3].
The optimal maximum likelihood (ML) method for the prob-
lem becomes a combinatorial optimization problem, whose
computational complexity increases exponentially along the
problem size. Since the complexity is prohibitive especially
in the large-scale problem, a low-complexity algorithm is re-
quired for the reconstruction. Although there are several meth-
ods to reconstruct the discrete-valued sparse vector [4], [5],
they might not be suitable for the non-sparse discrete-valued
vector reconstruction. In fact, the performance for discrete-
valued dense vectors has not been evaluated in [4] and [5].

For the discrete-valued vector reconstruction, the
regularization-based method and the transform-based
method have been proposed [6]. These two methods borrow
the idea of compressed sensing [7], [8] to formulate the

This work was supported in part by the Grants-in-Aid for Scientific
Research no. 15K06064 and 15H02252 from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

reconstruction problem as convex optimization, which can be
solved with interior point methods [9]. The required number
of measurements is analytically derived for the binary vector
reconstruction using the regularization-based method. For
multi-valued vectors other than the binary vector, however,
no theoretical results have been shown for the method.
Although a more general theorem has been theoretically
provided for the transform-based method, it is assumed in
the proof that the unknown vector is uniformly distributed.
On the other hand, in [10], sum-of-absolute-value (SOAV)
optimization similar to the regularization-based method has
been proposed for the discrete-valued vector reconstruction.
Since the SOAV optimization for uniform distributions is
equivalent to the regularization-based method, its required
number of measurements for the perfect reconstruction
has been provided for the case of a uniformly distributed
binary vector. For general discrete distributions, however, the
required number of measurements for the SOAV optimization
has not been obtained.

In this paper, using the idea of the SOAV optimization, we
propose an algorithm for the reconstruction of discrete-valued
vectors whose elements have a symmetric probability distribu-
tion. The proposed algorithm, referred to as discreteness-aware
approximate message passing (DAMP), is derived with the
similar approach to that of the approximate message passing
(AMP) algorithm [11], [12], which has been originally pro-
posed for compressed sensing. The DAMP algorithm requires
a lower computational complexity than interior point methods.
We also analytically evaluate the performance of DAMP via
the state evolution framework [11], [13]. In the analysis, we
derive a required number of measurements for the exact re-
construction and obtain the parameter of the DAMP algorithm
minimizing the number of measurements. Moreover, we can
analytically show that, if the unknown vector is discrete-
valued, DAMP can correctly reconstruct the vector with a
smaller number of measurements than the conventional AMP
algorithm. Furthermore, unlike the conventional transform-
based method, the analysis for DAMP can be applied to
non-uniform distributions. Simulation results show that the
proposed DAMP algorithm can reconstruct the discrete-valued
vector from its underdetermined linear measurements and
the performance can be well predicted with the theoretical
analysis.978-1-5090-3009-5/17/$31.00 c⃝2017 IEEE
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In the rest of the paper, we use the following notations. We
represent the transpose by (·)T, the vector whose elements are
all 1 by 1, and the vector whose elements are all 0 by 0. For
a vector v = [v1 · · · vN ]T ∈ RN , we define the ℓ1 and ℓ2

norms of v as ∥v∥1 =
∑N

j=1|vj | and ∥v∥2 =
√∑N

j=1 v
2
j ,

respectively. We denote the mean of the elements of v by
⟨v⟩ = 1

N

∑N
j=1 vj . For a function h : RN → R, the proximity

operator [14] of h is defined as

proxh(v) = arg min
s∈RN

{
h(s) +

1

2
∥s− v∥22

}
. (1)

The jth element of sgn(v) is the sign of vj .

II. PROPOSED DAMP ALGORITHM

In this section, we shortly review the SOAV optimiza-
tion [10] and describe the proposed DAMP algorithm based
on the optimization problem.

A. SOAV optimization
The SOAV optimization is a technique to reconstruct a

discrete-valued vector b = [b1 · · · bN ]T ∈ RN from its linear
measurements y = Ab ∈ RM , where A ∈ RM×N . In
this paper, we assume b ∈ {r0,±r1, . . . ,±rL}N (rL >
rL−1 > · · · > r1 > r0 = 0) and symmetric distribution
Pr(bj = rℓ) = Pr(bj = −rℓ) = pℓ, Pr(bj = 0) =
p0 (j = 1, . . . , N and ℓ = 1, . . . , L), where b1, . . . , bN are
independent, p0 ≥ 0, p1, . . . , pL > 0 and p0+2

∑L
ℓ=1 pℓ = 1.

The SOAV optimization to estimate b can be written as

b̂ = arg min
s∈RN

{
q0∥s∥1 +

L∑
ℓ=1

qℓ (∥s− rℓ1∥1 + ∥s+ rℓ1∥1)

}
subject to y = As, (2)

which uses the idea of ℓ1 optimization [7] and the fact that
b−rℓ1 has approximately pℓN zero elements. The coefficients
q0, . . . , qL ≥ 0 are fixed as qℓ = pℓ (ℓ = 0, . . . , L) in
the original SOAV optimization [10]. The regularization-based
method [6] is also a special case of the problem (2) because
it is obtained by setting q0 = · · · = qL = 1. However, it
is not clear whether these selections of the coefficients are
appropriate or not. We thus consider them as parameters to be
optimized before solving (2), as described in Sec. III. Although
we consider only the noise-free case in this paper, we can
straightforwardly extend DAMP for the noisy case as in the
case of compressed sensing [12].

B. DAMP algorithm
The proposed DAMP algorithm for (2) can be derived in a

similar approach to that of the AMP algorithm for compressed
sensing [11]. In what follows, we assume that the elements of
the sensing matrix A are i.i.d. with zero mean and variance
1/M . In the large system limit (M,N → ∞ with M/N = ∆),
a parameterized DAMP algorithm is written as

xt+1 = η(ATzt + xt, λσt), (3)

zt = y −Axt +
1

∆
zt−1⟨η′(ATzt−1 + xt−1, λσt−1)⟩,

(4)

where xt is the estimate of b in the tth iteration, λ ≥ 0 is
the parameter, and σ2

t = ∥xt − b∥22/N is the mean squared
error (MSE) of xt. Since the true solution b is unknown in
practice, we use the alternative value for σ2

t calculated from
the current estimate alone, e.g., σ̂2

t = ∥xt − R(xt)∥22/N ,
where R maps each element of xt into the closest el-
ement in {r0,±r1, . . . ,±rL}. The function η is the soft
thresholding function given by η(u, λσ) = proxλσJ(u) :=
arg min s∈RN {λσJ(s)+ 1

2∥s−u∥22}, where J(s) = q0∥s∥1+∑L
ℓ=1 qℓ (∥s− rℓ1∥1 + ∥s+ rℓ1∥1) is the objective function

in (2). From the proposition in [1], the jth element of
proxλσJ(u) can be written as

[proxλσJ(u)]j =

uj +QLλσ (uj < −rL −QLλσ)
...

...
−rk (−rk −Qkλσ ≤ uj < −rk −Qk−1λσ)

uj +Qk−1λσ (−rk −Qk−1λσ ≤ uj < −rk−1 −Qk−1λσ)
...

...
0 (−Q0λσ ≤ uj < Q0λσ)
...

...
uj −Qk−1λσ (rk−1 +Qk−1λσ ≤ uj < rk +Qk−1λσ)

rk (rk +Qk−1λσ ≤ uj < rk +Qkλσ)
...

...
uj −QLλσ (rL +QLλσ ≤ uj)

,

(5)

where Q0 = q0 and Qk = q0+2
∑k

ℓ=1 qℓ (k = 1, . . . , L). Note
that [proxλσJ(u)]j is a function of only uj and hence the soft
thresholding function η is a element-wise function. Figure 1
shows an example of the soft thresholding function in the case
with L = 1 and r1 = 1, where [η(u, λσ)]j denotes the jth
element of η(u, λσ). The jth element of η′(u, λσ) is defined
as [η′(u, λσ)]j = 0 if [η(u, λσ)]j ∈ {r0,±r1 . . . ,±rL},
otherwise [η′(u, λσ)]j = 1.

The update equations of DAMP (3), (4) are basically the
same as those of the AMP algorithm for compressed sens-
ing [11]. The only difference is the soft thresholding function
η, which is [η(u, λσ)]j = sgn(uj)max{|uj | − λσ, 0} for the
reconstruction of the sparse vector. Since the equations (3)
and (4) can be calculated only with the addition of the
vectors and the multiplication of the matrix and the vector, the
computational complexity in each iteration is O(MN). It is
lower than the complexity of the interior point method used in
the conventional regularization-based method and transform-
based method, i.e., O(MN2) and O((2L+ 1)2(M +N)N2)
per iteration [6], respectively.

III. STATE EVOLUTION FOR DAMP

State evolution [11], [13] is a framework to analyze the
performance of the AMP algorithm. Similarly to the case
of compressed sensing, the state evolution formula for the

2017 IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)



Fig. 1. Example of soft thresholding function η(u, λσ) (L = 1, r1 = 1)

proposed DAMP (3), (4) is given by

σ2
t+1 = Ψ(σ2

t ), (6)

where

Ψ(σ2) = E

[{
η

(
X +

σ√
∆
Z, λσ

)
−X

}2
]
. (7)

The random variable X has the same distribution as that of
the unknown discrete variable, i.e., Pr(X = rℓ) = Pr(X =
−rℓ) = pℓ, Pr(X = 0) = p0 (ℓ = 1, . . . , L). Z is the standard
Gaussian random variable independent of X .

In the large system limit, the MSE σ2
t = ∥xt−b∥22/N of xt

can be predicted via the state evolution (6). Since Ψ(0) = 0,
the sequence {σ2

t }t=0,1,... with the recursion (6) converges
to zero if Ψ(σ2) is concave and the derivative of Ψ(σ2) at
σ2 = 0 is smaller than one, i.e., dΨ

d(σ2)

∣∣∣
σ↓0

< 1. In fact, these

conditions result in Ψ(σ2) < σ2 and hence we have σ2
t+1 =

Ψ(σ2
t ) < σ2

t .
Since we consider the coefficients q0, . . . , qL ≥ 0 in (2)

as the parameters, all of the parameters in DAMP are λ
and Q0, . . . , QL in the soft thresholding function (5). Hence,
assuming QL = q0+2

∑L
ℓ=1 qℓ = 1 without loss of generality,

we minimize dΨ
d(σ2)

∣∣∣
σ↓0

as

Dmin = min
λ,Q0,...,QL

dΨ
d(σ2)

∣∣∣∣
σ↓0

subject to λ ≥ 0, 0 ≤ Q0 ≤ · · · ≤ QL = 1 (8)

and use the parameters corresponding to the minimum value
Dmin. If Dmin < 1 holds, the MSE {σ2

t }t=0,1,... obtained by
DAMP with such parameters converges to zero and DAMP
reconstructs the unknown vector b perfectly. To calculate

dΨ
d(σ2)

∣∣∣
σ↓0

, we firstly obtain

Ψ(σ2) = p0Ψ0(σ
2) + 2

L∑
ℓ=1

pℓΨℓ(σ
2) (9)

from (7), where

Ψℓ(σ
2) = E

[{
η

(
rℓ +

σ√
∆
Z, λσ

)
− rℓ

}2
]

(10)

=

∫ ∞

−∞

{
η

(
rℓ +

σ√
∆
z, λσ

)
− rℓ

}2

ϕ(z) dz, (11)

and ϕ(z) =
(
1/
√
2π

)
exp

(
−z2/2

)
is the probability distribu-

tion function of the standard Gaussian distribution. From (9),
we have

dΨ
d(σ2)

∣∣∣∣
σ↓0

= p0
dΨ0

d(σ2)

∣∣∣∣
σ↓0

+ 2
L∑

ℓ=1

pℓ
dΨℓ

d(σ2)

∣∣∣∣
σ↓0

. (12)

With the direct calculation of (11), we can obtain

dΨℓ

d(σ2)

∣∣∣∣
σ↓0

= Dℓ(U) (13)

:=
1

∆

{
Uℓ−1ϕ (Uℓ−1)− Uℓϕ (Uℓ) +

(
1 + U2

ℓ−1

)
Φ(Uℓ−1)

+
(
1 + U2

ℓ

)
(1− Φ(Uℓ))

}
, (14)

where U = [U0 · · · UL]
T, Uℓ = Qℓλ

√
∆, Q−1 = −Q0, and

Φ(z) =
∫ z

−∞ ϕ(z′)dz′ is the cumulative distribution function
of the standard Gaussian distribution. Let us define D(U) :=

dΨ
d(σ2)

∣∣∣
σ↓0

and rewrite (12) as

D(U) = p0D0(U) + 2
L∑

ℓ=1

pℓDℓ(U). (15)

Finally, the problem (8) can be rewritten as

Dmin = min
U

D(U) subject to 0 ≤ U0 ≤ · · · ≤ UL, (16)

which can be solved via interior point methods [9] because the
Hessian of D(U) is positive semi-definite and hence D(U)
is a convex function of U . By solving (16), we can obtain
the soft thresholding function η minimizing dΨ

d(σ2)

∣∣∣
σ↓0

. Note

that the above discussion assumes the large system limit and
hence the condition Dmin < 1 is not necessarily sufficient for
the finite-scale problem.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
DAMP via computer simulations. In the simulations, the
sensing matrix A ∈ RM×N is composed of i.i.d. Gaussian
variables with zero mean and variance 1/M . As a discrete-
valued vector b, we consider two cases of bj ∈ {0,±1} and
bj ∈ {0,±1,±3}. For simplicity, we assume that each nonzero
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Fig. 2. Phase transition of DAMP and AMP

element is drawn uniformly from {±1} and {±1,±3}, respec-
tively. The initialization of DAMP in the simulation is given
by x−1 = x0 = 0 and z−1 = 0.

Figure 2 shows the phase transition line of DAMP, where
Dmin obtained by (16) satisfies Dmin = 1. For comparison,
we also show the phase transition of the AMP algorithm
in [11]. The lines are the borders between the success and
failure regions of the algorithms in the large system limit.
In the left side of the line, we have Dmin > 1 and hence
the MSE of the estimate cannot be zero. In the right side,
Dmin < 1 holds and we can estimate b correctly. From the
figure, we can observe that DAMP and AMP needs almost
the same number of measurements to precisely reconstruct a
discrete-valued sparse vector with large p0. For a dense vector
with small p0, however, the required number of measurements
for DAMP is much less than that for AMP because AMP
uses only the sparsity to reconstruct b while DAMP can use
both the sparsity and the discreteness. In particular, from
the phase transition of DAMP for p0 = 0, we can see
that DAMP needs at least N/2 measurements to reconstruct
N dimensional binary vector b ∈ {±1}N and 3N/4 mea-
surements to reconstruct b ∈ {±1,±3}N . For example, in
the case with bj ∈ {±1}, the minimum value of D(U) is
actually Dmin = 1/(2∆) with U = [0 ∞]T and hence
∆ > 1/2 is required. The corresponding soft thresholding
function is [η(u, λσ)]j = min(max(uj ,−1), 1), which is also
used in [11] for b ∈ [−1, 1]N with a few elements in the
interior (−1, 1).

In Fig. 3, we plot Ψ(σ2) − σ2 as a function σ2 for the
two cases with bj ∈ {±1} and bj ∈ {±1,±3}. From the
figure, we can see that Ψ(σ2) is concave. The intersections of
each curve and the horizontal line Ψ(σ2) − σ2 = 0 indicate
the fixed points of Ψ(σ2). Figure 3 shows that Ψ(σ2) has
no positive fixed point when ∆ is larger than the threshold
obtained from Fig. 2, i.e., 0.5 for bj ∈ {±1} and 0.75 for
bj ∈ {±1,±3}. Since Ψ(σ2) < σ2 holds for any σ2 > 0

σ
2

0 0.5 1 1.5 2

Ψ
(σ

2
)
−
σ
2

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02
∆ = 0.49 (bj ∈ {±1})
∆ = 0.50 (bj ∈ {±1})
∆ = 0.51 (bj ∈ {±1})
∆ = 0.74 (bj ∈ {±1,±3})
∆ = 0.75 (bj ∈ {±1,±3})
∆ = 0.76 (bj ∈ {±1,±3})

bj ∈ {±1} bj ∈ {±1,±3}

Fig. 3. Ψ(σ2)− σ2

in this case, the sequence {σ2
t }t=0,1,... obtained with the state

evolution (6) converges to 0 and hence DAMP provides perfect
reconstruction of b. In other words, in the large system limit,
DAMP can correctly estimate b ∈ {±1}N if M > N/2 and
estimate b ∈ {±1,±3}N if M > 3N/4.

The obtained result for DAMP with p0 = 0 agrees with
the theorem for the transform-based method in [6], which
claims that it can reconstruct a discrete-valued vector in
{c1, . . . , cT }N if M > (T − 1)N/T . In the proof of the
theorem, however, it is assumed that the true solution is
drawn uniformly from {c1, . . . , cT }N . On the other hand, the
state evolution for DAMP can also be applied even to non-
uniform discrete distributions. Similarly to the theorem for the
transform-based method, it is proven that the regularization-
based method [6] can reconstruct an N dimensional binary
vector if M > N/2 in the large system limit, which also
agrees with our result for DAMP. For a non-binary vector such
as b ∈ {±1,±3}N , however, no theoretical analysis for the
method is provided. In fact, it has been shown in [6] by com-
puter simulations that the required number of measurements
is larger than 3N/4 for the reconstruction of b ∈ {±1,±3}N .
It is because the coefficients q0, . . . , qL in the optimization
problem (2) are all 1 in the method, while the parameters are
optimized as (16) by using the state evolution in DAMP.

In Figs. 4 and 5, we compare the prediction with the state
evolution (6) and the empirical behavior of the MSE σ2

t =
∥xt − b∥22/N with DAMP obtained by simulations. In Fig. 4,
we fix ∆ = 0.7 and reconstruct b ∈ {0,±1}N with p0 = 0.2
for several problem sizes of N = 100, 500, 1000, 2000, and
3000. In Fig. 5, we set ∆ = 0.9 and reconstruct b ∈
{0,±1,±3}N with p0 = 0.2. The figures show that the
empirical performance approaches to the prediction with the
state evolution as the problem size increases.

In Fig. 6, we empirically reconstruct b ∈ {0,±1}N with
N = 1000, p0 = 0, 0.4 to evaluate the rate of the success
recovery, which is defined as σ2

t < 10−3 after t = 500
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Fig. 4. Empirical performance of DAMP and theoretical prediction via state
evolution (p0 = 0.2, ∆ = 0.7, b ∈ {0,±1}N )
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Fig. 5. Empirical performance of DAMP and theoretical prediction via state
evolution (p0 = 0.2, ∆ = 0.9, b ∈ {0,±1,±3}N )

iterations. The vertical lines correspond to the border between
the success and failure region obtained from Fig. 2. In the
large system limit, the left side of each vertical line is the
failure region and the right side is the success region. We can
see that the recovery rate rapidly increases around the border,
while the recovery rate is not equal to one in the success
region close to the border. One reason is that we restrict the
maximum number of iterations as t = 500 and another reason
is that the problem size here is finite and not large enough.

V. CONCLUSION

In this paper, we have proposed the DAMP algorithm
for the discrete-valued vector reconstruction. Using the state
evolution, we have analytically evaluated the performance of
DAMP to derive the condition for the perfect reconstruction
and to obtain the optimal values of the parameters. Simulation
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Fig. 6. Recovery rate of DAMP (N = 1000, b ∈ {0,±1}N )

results show that DAMP can reconstruct some discrete-valued
vectors from their underdetermined linear measurements and
the empirical performance agrees well with our theoretical
results. Future work includes the extension of DAMP for
discrete-valued complex vector and its application.
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