
PERFORMANCE ANALYSIS OF DISCRETE-VALUED VECTOR RECONSTRUCTION
BASED ON BOX-CONSTRAINED SUM OF L1 REGULARIZERS

Ryo Hayakawa⋆ Kazunori Hayashi†

⋆Graduate School of Informatics, Kyoto University
†Graduate School of Engineering, Osaka City University

ABSTRACT

In this paper, we analyze the asymptotic performance of a
convex optimization-based discrete-valued vector reconstruc-
tion from linear measurements. We firstly propose a box-
constrained version of the conventional sum of absolute val-
ues (SOAV) optimization, which uses a weighted sum of ℓ1
regularizers as a regularizer for the discrete-valued vector. We
then derive the asymptotic symbol error rate (SER) perfor-
mance of the box-constrained SOAV (Box-SOAV) optimiza-
tion theoretically by using convex Gaussian min-max theo-
rem. Simulation results show that the empirical SER perfor-
mances of Box-SOAV and the conventional SOAV are very
close to the theoretical result for Box-SOAV when the prob-
lem size is sufficiently large.

Index Terms— Discrete-valued vector reconstruction,
convex optimization, convex Gaussian min-max theorem

1. INTRODUCTION

Reconstruction of a discrete-valued vector from its linear
measurements often arises in various communications sys-
tems [1–5]. In some applications such as overloaded multiple-
input multiple-output (MIMO) systems [6–9], the number of
measurements is less than that of the unknown variables. In
such underdetermined problems, the performance of sim-
ple linear methods, e.g., linear minimum mean-square-error
(LMMSE) method, have poor performance. Although the
maximum likelihood (ML) method with the exhaustive search
can achieve good performance, the computational complexity
increases exponentially along with the problem size.

To obtain good performance with reasonable computa-
tional complexity, some convex optimization-based methods
have been proposed for large-scale discrete-valued vector
reconstruction. Box relaxation method [10, 11] considers
the ML method under the hypercube including all possible
discrete-valued vectors. Regularization-based method and
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transform-based method [12] apply the idea of compressed
sensing [13,14] to discrete-valued vector reconstruction. Sum
of absolute values (SOAV) optimization [15] takes a similar
approach and uses a weighted sum of ℓ1 regularizers as a
regularizer for the discrete-valued vector. Unlike the other
convex optimization-based methods, the SOAV optimization
can take the probability distribution of unknown variables
into consideration. The SOAV optimization has been ap-
plied to some practical problems [7, 16–20], whereas only a
few theoretical aspects are known for the performance of the
SOAV optimization.

In this paper, we analyze the asymptotic performance of
discrete-valued vector reconstruction based on the SOAV
optimization. To make the analysis simpler, we firstly
modify the conventional SOAV optimization to obtain box-
constrained SOAV (Box-SOAV) by using the boundness of
the unknown vector. We then investigate the performance
of Box-SOAV by using convex Gaussian min-max theorem
(CGMT) [11, 21, 22], which has been used for the analysis
of several convex optimization problems. We provide the
asymptotic symbol error rate (SER) of Box-SOAV in the
large system limit, where the number of unknown variables
and the number of measurements increase infinitely with
a fixed ratio. The asymptotic SER is characterized by the
probability distribution of the unknown vector, the measure-
ment ratio, the parameters of Box-SOAV, and the optimizer
of a scalar optimization problem associated with the original
Box-SOAV optimization. The result enables us to predict
the performance of Box-SOAV in large-scale discrete-valued
vector reconstruction. Simulation results show that the em-
pirical SER performance of Box-SOAV and the conventional
SOAV optimization agree well with the theoretical result for
Box-SOAV in large-scale problems.

In the rest of the paper, we use the following notations.
we denote the transpose by (·)T, the identity matrix by I , the
vector whose elements are all 1 by 1, and the vector whose
elements are all 0 by 0. For a vector z = [z1 · · · zN ]

T ∈ RN ,
the ℓ1 norm and the ℓ2 norm are given by ∥z∥1 =

∑N
n=1 |zn|

and ∥z∥2 =
√∑N

n=1 z
2
n, respectively. We denote the num-

ber of nonzero elements of z by ∥z∥0 and the nth element
of z by [z]n. For a convex function ζ : RN → R, we
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define the Moreau envelope and the proximity operator as
envζ(z) = minu∈RN

{
ζ(u) + 1

2
∥u− z∥22

}
and proxζ(z) =

arg min u∈RN

{
ζ(u) + 1

2
∥u− z∥22

}
, respectively. When a se-

quence of random variables {Zn} (n = 1, 2, . . . ) converges
in probability to Z, we denote Zn

P−→ Z.

2. PRELIMINARIES

2.1. SOAV Optimization

We consider the reconstruction of an N dimensional discrete-
valued vector x = [x1 · · · xN ]

T ∈ RN ⊂ RN from its linear
measurements y = Ax+ v ∈ RM . Here, R = {r1, . . . , rL}
(r1 < · · · < rL) is a finite set of possible values for the ele-
ments of the unknown vector. The distribution of x is given
by Pr(xn = rℓ) = pℓ, where

∑L
ℓ=1 pℓ = 1. A ∈ RM×N is

a known measurement matrix composed of independent and
identically distributed (i.i.d.) Gaussian random variables with
zero mean and variance 1/N . v ∈ RM is an additive Gaus-
sian noise vector with mean 0 and covariance matrix σ2

vI .
The SOAV optimization [15] for the reconstruction of x

is given by

min
s∈RN

{
1

2
∥y −As∥22 +

L∑
ℓ=1

qℓ ∥s− rℓ1∥1

}
, (1)

where qℓ (≥ 0) is a parameter. The SOAV optimization uses
the regularizer

∑L
ℓ=1 qℓ ∥s− rℓ1∥1 for the unknown discrete-

valued vector. The idea of the regularizer comes from com-
pressed sensing [13, 14] and the fact that the vector x − rℓ1
has some zero elements.

2.2. CGMT

CGMT [11,21,22] is a theorem that associates the primary op-
timization (PO) problem and the auxiliary optimization (AO)
problem given by

(PO): Φ(G) = min
w∈Sw

max
u∈Su

{
uTGw + ψ(w,u)

}
,

(AO): ϕ(g,h) = min
w∈Sw

max
u∈Su

{
∥w∥2 g

Tu− ∥u∥2 h
Tw + ψ(w,u)

}
,

respectively, where G ∈ RM×N , g ∈ RM , h ∈ RN , Sw ⊂
RN , Su ⊂ RM , and ψ : RN × RM → R. We assume that
Sw and Su are closed compact sets, and ψ(·, ·) is a continuous
convex-concave function on Sw × Su. The elements of G,
g, and h are i.i.d. standard Gaussian random variables. The
following theorem relates the optimizer ŵΦ(G) of (PO) with
the optimal value of (AO) in the limit of M,N → ∞ with a
fixed ratio ∆ = M/N , which we simply denote N → ∞ in
this paper.

Theorem 1 (CGMT [11, 22]). Let S be an open set in Sw
and Sc = Sw \ S . Also, let ϕSc(g,h) be the optimal value
of (AO) with the constraint w ∈ Sc. If there are con-
stants η > 0 and ϕ̄ satisfying (i) ϕ(g,h) ≤ ϕ̄ + η and (ii)
ϕSc(g,h) ≥ ϕ̄+2η with probability approaching 1, then we
have lim

N→∞
Pr (ŵΦ(G) ∈ S) = 1.

3. MAIN RESULT

In this paper, to make the analysis simpler, we newly consider
the Box-SOAV optimization given by

x̂ =arg min
s∈RN

{
1

2
∥y −As∥22 +

L∑
ℓ=1

qℓ ∥s− rℓ1∥1 + I(s)

}
, (2)

where the function I(·) denotes the indicator function given
by I(s) = 0 if s ∈ [r1, rL]

N , otherwise I(s) = ∞.
This modification is reasonable because x ∈ [r1, rL]

N

and does not change the value of the objective function for
s ∈ [r1, rL]

N . Let f(s) =
∑L

ℓ=1 qℓ ∥s− rℓ1∥1 + I(s). By
modifying the result in [18], the nth element of the proximity
operator proxγf (z) (γ ≥ 0) can be obtained as[

proxγf (z)
]
n

=

{
zn − γQk (rk−1 + γQk ≤ zn < rk + γQk)

rk (rk + γQk ≤ zn < rk + γQk+1)
, (3)

where zn is the nth element of z and Qk =
(∑k−1

ℓ=1 qℓ

)
−(∑L

ℓ′=k qℓ′
)

(k = 2, . . . , L), Q1 = −∞, QL+1 = ∞.

The SER of Box-SOAV is given by 1
N ∥Q(x̂)− x∥0,

where the quantizer Q(·) maps each element of the vector to
the nearest value in R, i.e., Q(x̂) = arg min z∈RN ∥z − x̂∥1.
For the asymptotic SER, we have the following theorem.

Theorem 2. The measurement matrix A ∈ RM×N is as-
sumed to be composed of i.i.d. Gaussian random variables
with zero mean and variance 1/N . The distribution of the
noise vector v ∈ RM is also assumed to be Gaussian with
mean 0 and covariance matrix σ2

vI . If the optimization
problem maxβ>0 minα>0 F (α, β) has a unique optimizer
(α∗, β∗), we have

1

N
∥Q(x̂)− x∥0

P−→ 1−
L∑

ℓ=1

pℓ Pr

[
Q

(
prox α∗

β∗√
∆

f

(
rℓ +

α∗
√
∆
H

))
= rℓ

]
(4)

as N → ∞, where F (α, β) =
{

αβ
√
∆

2 +
σ2

v β
√
∆

2α − 1
2β

2 −
αβ

2
√
∆

+ β
√
∆

α E
[
env α

β
√

∆
f

(
X + α√

∆
H
)]}

. Here, X is the
random variable with the same distribution as the unknown
variables, i.e., Pr(X = rℓ) = pℓ. H is the standard Gaussian
random variable independent of X .

The function F (α, β) and the asymptotic SER in (4)
can be calculated by using the probability density func-
tion p(z) = 1√

2π
exp(−z2/2) and cumulative distribution

function P (z) =
∫ z

−∞ p(z′)dz′ of the standard Gaussian
distribution. For example, the asymptotic SER is given by

1−

{
pL +

L−1∑
ℓ=1

pℓP

(
(−rℓ + rℓ+1)

√
∆

2α∗ +
Qℓ+1

β∗

)}

+

{
L∑

ℓ=2

pℓP

(
(rℓ−1 − rℓ)

√
∆

2α∗ +
Qℓ

β∗

)}
. (5)
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4. PROOF OUTLINE

In this section, we show a sketch of the proof of Theorem 2.
Although the procedure of the proof roughly follows the ap-
proaches using CGMT in [11,21,22], we need to modify sev-
eral parts for our problem. Some details of the proof are omit-
ted due to space limitations.

4.1. (PO)

To obtain the (PO) problem for the proof, we firstly define
the error vector as w := s − x and rewrite the Box-SOAV
optimization (2) as

min
w∈Sw

1

N

{
1

2
∥Aw − v∥22 +

L∑
ℓ=1

qℓ ∥x+w − rℓ1∥1

}
, (6)

where Sw =
{
z ∈ RN : r1 − xn ≤ zn ≤ rL − xn (n =

1, . . . , N)
}

and the objective function is normalized by N .
The optimization problem (6) is equivalent to

min
w∈Sw

max
u∈RM

1

N

{
√
NuT (Aw − v)− N

2
∥u∥22

+

L∑
ℓ=1

qℓ ∥x+w − rℓ1∥1

}
. (7)

Let w∗ and u∗ be the optimal values of w and u, respec-
tively. Since u∗ satisfies u∗ = 1√

N
(Aw∗ − v) and w∗ is

bounded, there exists a constant Cu such that ∥u∗∥2 ≤ Cu
with probability approaching 1. We can thus rewrite (7) as

min
w∈Sw

max
u∈Su

{
1

N
uT

(√
NA

)
w − 1√

N
vTu− 1

2
∥u∥22

+
1

N

L∑
ℓ=1

qℓ ∥x+w − rℓ1∥1

}
, (8)

where Su =
{
z ∈ RM : ∥z∥2 ≤ Cu

}
.

4.2. (AO)

The (AO) problem corresponding to (8) is given by

min
w∈Sw

max
u∈Su

{
1

N

(
∥w∥2 g

Tu− ∥u∥2 h
Tw

)
− 1√

N
vTu

− 1

2
∥u∥22 +

1

N

L∑
ℓ=1

qℓ ∥x+w − rℓ1∥1

}
. (9)

The objective function in (9) can be written as 1√
N

(
∥w∥2√

N
gT−

vT
)
u− 1

N ∥u∥2 hTw− 1
2 ∥u∥

2
2+

1
N

∑L
ℓ=1 qℓ ∥x+w − rℓ1∥1.

Since both g and v are Gaussian, ∥w∥2√
N

g−v is also Gaussian

distributed with mean 0 and covariance matrix
(

∥w∥2
2

N + σ2
v

)
I .

We can thus rewrite
(

∥w∥2√
N

gT − vT
)
u as

√
∥w∥2

2

N + σ2
vg

Tu,
where we use the slight abuse of notation g as the random

vector with i.i.d. standard Gaussian elements. By setting
∥u∥2 = β, the (AO) problem can be further rewritten as

min
w∈Sw

max
0≤β≤Cu

{√
∥w∥22
N

+ σ2
v
β ∥g∥2√

N
− 1

N
βhTw − 1

2
β2

+
1

N

L∑
ℓ=1

qℓ ∥x+w − rℓ1∥1

}
. (10)

We use the identity χ = minα>0

(
α
2 + χ2

2α

)
for χ (> 0) and

obtain

max
β>0

min
α>0

{
αβ

2

∥g∥2√
N

+
σ2

vβ

2α

∥g∥2√
N

− 1

2
β2 − 1

N

N∑
n=1

αβh2
n

2

√
N

∥g∥2

+
β

α

∥g∥2√
N

min
w∈Sw

1

N

N∑
n=1

Jn(wn)

}
, (11)

where Jn(wn) =
1
2

(
wn − αhn

√
N

∥g∥2

)2

+α
β

√
N

∥g∥2

∑L
ℓ=1 qℓ|xn+

wn − rℓ|. The change in the range of β does not change the
optimal value. Since the optimization over w in (11) is given
by minw∈Sw

1
N

∑N
n=1 Jn(wn) =

1
N

∑N
n=1 envα

β

√
N

∥g∥2
f

(
xn+

√
N

∥g∥2
αhn

)
, (11) can be rewritten as ϕ∗N = maxβ>0 minα>0

FN (α, β), where

FN (α, β)

=
αβ

2

∥g∥2√
N

+
σ2

vβ

2α

∥g∥2√
N

− 1

2
β2 − 1

N

N∑
n=1

αβh2
n

2

√
N

∥g∥2

+
β

α

∥g∥2√
N

1

N

N∑
n=1

envα
β

√
N

∥g∥2
f

(
xn +

√
N

∥g∥2
αhn

)
. (12)

The optimal value of w is given by

ŵN = proxα∗
N

β∗
N

√
N

∥g∥2
f

(
x+

√
N

∥g∥2
α∗
Nh

)
− x, (13)

where α∗
N and β∗

N are the optimal values of α and β corre-
sponding to ϕ∗N , respectively.

4.3. Applying CGMT

We then consider the condition (i) of Theorem 1. AsN → ∞,
FN (α, β) converges pointwise to F (α, β) defined in Theo-
rem 2. Let ϕ∗ = maxβ>0 minα>0 F (α, β) and denote the
optimal values of α and β by α∗ and β∗, respectively. By a
similar discussion to Lemma IV. 1 of [11], we have ϕ∗N

P−→ ϕ∗

and (α∗
N , β

∗
N )

P−→ (α∗, β∗). Hence, the optimal value of (AO)
satisfies the condition (i) in CGMT for ϕ̄ = ϕ∗ and any η > 0.

Next, we define the set S used in CGMT. We have the
following lemma for the optimizer ŵN of (AO) in (13).
Lemma 1. Let ψ(·, ·) : [r1−rL, rL−r1]×R → R. If ψ(·, rℓ)
is Lipschitz continuous for any rℓ, then 1

N

∑N
n=1 ψ(ŵN,n, xn)

P−→ E [ψ(W,X)], where ŵN,n denotes the nth element of ŵN

in (13) and W = prox α∗
β∗√

∆
f

(
X + α∗

√
∆
H
)
−X .
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Fig. 1. SER of Box-SOAV versus Q2 (∆ = 0.75, (r1, r2) =
(0, 1), (p1, p2) = (0.8, 0.2), SNR = 15 dB)

From Lemma 1, we can define

S =

{
z ∈ RN :

∣∣∣∣∣ 1N
N∑

n=1

ψ(zn, xn)− E [ψ(W,X)]

∣∣∣∣∣ < ε

}
(14)

and obtain ŵN ∈ S with probability approaching 1 for any ε
(> 0).

Finally, we consider the condition (ii) of CGMT. From
the strong convexity in w of the objective function in (10),
we can show ϕSc ≥ ϕ∗N + η̃ with probability approaching 1
for a constant η̃ (> 0), where ϕSc denotes the optimal value
of (AO) with the restriction w ∈ Sc. Hence, by setting ϕ̄ =
ϕ∗, η = η̃/3 in Theorem 1, we can use CGMT for S , i.e.,
Lemma 1 holds not only for the optimizer ŵN of (AO) but
also for that of (PO).

We can derive the result of Theorem 2 by using CGMT for
S in (14) with ψ(w, x) = 1 − χ(w + x, x), where the func-
tion χ(·, ·) is given by χ(x̂, x) = 1 if Q(x̂) = x, otherwise
χ(x̂, x) = 0. Although χ(·, rℓ) is not Lipschitz continuous,
we can approximate it with a Lipschitz function because H
is a continuous random variable and the probability measure
for the discontinuity point of χ(·, rℓ) is zero (For a similar
discussion, see Section IV-B and Lemma A-4 in [11]).

5. SIMULATION RESULTS

In this section, we compare the theoretical results by Theo-
rem 2 and the empirical performance obtained by computer
simulations. In the simulations, the measurement matrix A ∈
RM×N and the noise vector v ∈ RM satisfy the assumptions
in Theorem 2.

Figure 1 shows the SER performance for the binary vec-
tor with (r1, r2) = (0, 1). The measurement ratio is ∆ =
0.75 and the distribution of unknown variable is given by
(p1, p2) = (0.8, 0.2). The signal-to-noise ratio (SNR) defined
as

∑L
ℓ=1 pℓr

2
ℓ/σ

2
v is 15 dB. In this scenario, the Box-SOAV

optimization depends only on Q2 = q1 − q2 because q1 |s|+

Fig. 2. SER versus ∆ (N = 1500, (r1, r2, r3) = (−1, 0, 1),
(p1, p2, p3) = (0.25, 0.5, 0.25), SNR = 20 dB)

q2 |s− 1| = (q1 − q2)s + (const.) for any s ∈ [0, 1]. In the
figure, ‘empirical’ represents the empirical performance ver-
sus Q2 obtained by averaging the SER over 500 independent
realizations of the measurement matrix. We use Douglas-
Rachford algorithm [23,24] to solve the Box-SOAV optimiza-
tion problem. We can see that the theoretical prediction de-
noted by ‘theoretical’ agrees well with the empirical perfor-
mance for large N .

Figure 2 shows the SER performance versus ∆ for the un-
known discrete-valued vector with (r1, r2, r3) = (−1, 0, 1).
We assume N = 1500, (p1, p2, p3) = (0.25, 0.5, 0.25),
and SNR of 20 dB. In the figure, ‘SOAV’ and ‘Box-SOAV’
represent the conventional SOAV optimization and the Box-
SOAV optimization, respectively. The parameters are given
by (q1, q2, q3) = (1, 0.005, 1), which achieves good perfor-
mance in the simulation. ‘ℓ1 optimization’ and ‘Box relax-
ation’ denote the performance of the ℓ1 optimization and the
box relaxation method given by

min
s∈RN

{1

2
∥y −As∥22 + λ ∥s∥1

}
, min

s∈[−1,1]N
∥y −As∥22 , (15)

respectively. We use λ = 0.005 for the ℓ1 optimization in
the simulation. From the figure, we can see that the empirical
performances of Box-SOAV and SOAV are close to the the-
oretical prediction of Box-SOAV. Moreover, they are better
than the ℓ1 optimization and the box relaxation method.

6. CONCLUSION

In this paper, we have derived the theoretical asymptotic per-
formance of the discrete-valued vector reconstruction using
the Box-SOAV optimization. By using the CGMT frame-
work, we have shown that the asymptotic SER can be ob-
tained with Theorem 2. Simulation results show that the the-
oretical prediction of Theorem 2 agrees well with the empir-
ical performance. Future work includes the extension of the
analysis to the reconstruction of the complex discrete-valued
vector, which often appears in communications systems.
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