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ABSTRACT

In this paper, we propose a fully distributed approximate
message passing (AMP) algorithm, which reconstructs an un-
known vector from its linear measurements obtained at nodes
in a network. The proposed algorithm is a distributed imple-
mentation of the centralized AMP algorithm, and consists of
the local computation at each node and the global computa-
tion using communications between nodes. For the global
computation, we propose a distributed algorithm named sum-
mation propagation to calculate a summation required in the
AMP algorithm. The proposed distributed AMP algorithm
does not require any central node such as a fusion center,
and can be realized only with locally available information at
each node. Simulation results show that the proposed algo-
rithm can achieve the same estimation accuracy as that of the
centralized AMP algorithm.

Index Terms— Approximate message passing, consen-
sus propagation, sensor network, compressed sensing

1. INTRODUCTION

As a distributed framework for compressed sensing [1,2], dis-
tributed compressed sensing has attracted much attention with
several applications such as wireless sensor networks, video
coding, and image fusion [3–5]. For the distributed com-
pressed sensing, distributed least absolute shrinkage and se-
lection operator (D-LASSO) [6] and distributed alternating
direction method of multipliers (D-ADMM) [7] have been
proposed. In each iteration of these algorithms, however, the
nodes in the network need to solve an optimization problem,
which may have high computational cost when the problem
size is large. To reduce the local computation at each node,
distributed iterative hard thresholding (D-IHT) [8,9] has been
proposed. Although each node performs simple calculations
such as additions and multiplications, the sparsity level of the
unknown vector is assumed to be known in D-IHT. To ad-
dress the problem, a distributed algorithm has been proposed
in [10, 11] based on approximate message passing (AMP)
algorithm [12, 13], which has been gathering attention due

This work was supported in part by the Grants-in-Aid for Scientific Re-
search no. 15K06064 and 15H02252 from MEXT, and the Grant-in-Aid for
JSPS Research Fellow no. 17J07055 from JSPS.

to its high computational efficiency and analytical tractabil-
ity [14–17]. Although the distributed algorithm can recon-
struct an unknown sparse vector without the knowledge of the
sparsity level, it requires a unique node, which plays a role as
a fusion center communicating with all nodes in the network.

In this paper, we propose a novel fully distributed AMP
algorithm, which does not require any fusion center. The pro-
posed algorithm is a fully distributed implementation of the
centralized AMP algorithm to obtain the estimate of an un-
known sparse vector at each node without sharing its mea-
surements. The distributed AMP algorithm can be divided
into the local computation at each node and the global com-
putation using communications between nodes. In the global
computation, each node needs to calculate a summation of
vectors at all nodes to obtain the same estimate as that of the
centralized AMP algorithm. To compute the summation, we
propose a distributed algorithm named summation propaga-
tion, which can be derived by modifying consensus propaga-
tion [18] for the average consensus problem. The distributed
AMP algorithm with summation propagation can provide the
same estimate of the unknown sparse vector as that of the cen-
tralized AMP algorithm without sharing the measurements at
all nodes. Moreover, since the centralized AMP algorithm can
be extended to more general scenarios [15, 19, 20], the pro-
posed approach can be applied for other reconstruction prob-
lems such as discrete-valued vector reconstruction. Simula-
tion results show that the proposed algorithm can achieve the
same performance as that of the centralized AMP algorithm.

In the rest of the paper, we use the following notations.
We denote the vector whose elements are all 0 by 0. For
a vector v = [v1 · · · vN ]T ∈ RN , the sample mean of the
elements of v is given by ⟨v⟩ = 1

N

∑N
n=1 vn. We repre-

sent the sign function by sgn(·). ϕ(z) = 1√
2π

exp
(
−z2/2

)
and Φ(z) =

∫ z

−∞ ϕ(z′)dz′ are the probability density func-
tion and the cumulative distribution function of the standard
Gaussian distribution, respectively.

2. PRELIMINARIES

2.1. AMP Algorithm
AMP algorithm [12, 13] has been originally proposed for
compressed sensing, where the goal is to reconstruct a sparse
vector x = [x1 · · · xN ]T ∈ RN from its underdetermined
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Algorithm 1 AMP Algorithm
Input: y ∈ RM ,A ∈ RM×N

Output: x̂ ∈ RN

1: x̂(1) = 0, s(0) = 0, r(0) = 0, σ̂2(0) = 0,∆ = M/N
2: for t = 1 to T do
3: s(t) = y −Ax̂(t) + 1

∆s(t− 1)
·
⟨
η′
(
r(t− 1); σ̂2(t− 1)

)⟩
4: r(t) = x̂(t) +

1

M
ATs(t)

5: σ̂2(t) =
∥s(t)∥22
MN

6: x̂(t+ 1) = η
(
r(t); σ̂2(t)

)
7: end for
8: x̂ = x̂(T + 1)

linear measurements y = Ax + v ∈ RM (M < N ). The
elements of x are assumed to be independent and identically
distributed (i.i.d.) random variables. We also assume that
the measurement matrix A ∈ RM×N is composed of i.i.d.
random variables with zero mean and unit variance, while
the variance is usually assumed to be 1/M in the literature.
v ∈ RM is the additive noise vector whose elements are i.i.d.
Gaussian variables with zero mean and variance σ2

v .
Algorithm 1 shows the AMP algorithm, where x̂(t) de-

notes the estimate of the unknown vector x at the tth itera-
tion. One of possible candidates of the function η(·) is the
soft thresholding function given by[

η
(
r;σ2

)]
n
= sgn (rn)max

(
|rn| − τ

σ√
∆
, 0

)
, (1)

where
[
η
(
r;σ2

)]
n

and rn denotes the nth element of
η
(
r;σ2

)
and r, respectively. The nth element of η′

(
r;σ2

)
is the partial derivative of η

(
r;σ2

)
with respect to rn. τ

(≥ 0) is the parameter and σ̂2(t) is the estimate of the mean-
square-error (MSE) σ2(t) = 1

N ∥x− x̂(t)∥22 of x̂(t) [16].
The AMP algorithm can be applied not only for the

sparse vector reconstruction but also for the reconstruction of
a discrete-valued vector as x ∈ {b1, . . . , bL}N [19, 20]. For
example, by using the function

[
η
(
r;σ2

)]
n
=

∑L
ℓ=1 pℓbℓϕ

(√
∆
σ (rn − bℓ)

)
∑L

ℓ′=1 pℓ′ϕ
(√

∆
σ (rn − bℓ′)

) (2)

instead of the soft thresholding function (1), we can recon-
struct the discrete-valued vector from its underdetermined lin-
ear measurements, where pℓ = Pr(xn = bℓ) (ℓ = 1, . . . , L)
and

∑L
ℓ=1 pℓ = 1. Generalized AMP (GAMP) [15] algorithm

has also been proposed for more general scenario of the vec-
tor reconstruction problem.

2.2. Consensus Propagation

Consensus propagation [18] is a distributed protocol to
achieve the average consensus on an undirected graph G

Fig. 1. System model

composed of K nodes. Specifically, node k (k = 1, . . . ,K)
has an initial value ck ∈ R, and the goal is that each node
obtains the average µ = 1

K

∑K
k=1 ck by the local computa-

tions and communications. Starting from the initialization
ν
(0)
k→j = 0 and ι

(0)
k→j = 0 for each node j ∈ Nk, node k

updates these variables as

ν
(t′)
k→j =

ck +
∑

i∈Nk\j ι
(t′−1)
i→k ν

(t′−1)
i→k

1 +
∑

i∈Nk\j ι
(t′−1)
i→k

, (3)

ι
(t′)
k→j = 1 +

∑
i∈Nk\j

ι
(t′−1)
i→k , (4)

where Nk denotes the set of neighbor nodes of node k. Af-
ter T ′ iterations, the estimate of the average µ at node k is
obtained as

µ̂k =
ck +

∑
i∈Nk

ι
(T ′)
i→kν

(T ′)
i→k

1 +
∑

i∈Nk
ι
(T ′)
i→k

. (5)

Note that if the graph G is a tree and T ′ is greater than or equal
to the diameter of the graph, the estimates µ̂k (k = 1, . . . ,K)
are exactly equal to µ.

3. SYSTEM MODEL

Figure 1 shows the system model considered in this paper. We
consider an undirected graph G composed of K nodes, which
can communicate only with their neighbor nodes. In this pa-
per, we assume that the graph G is a tree. For general graphs
including loops, we can extract a spanning tree from the orig-
inal graph [21, 22] and consider the message passing on the
tree. Each node k (k = 1, . . . ,K) observes an unknown vec-
tor x as yk = Akx + vk ∈ RMk , where Ak ∈ RMk×N and
vk ∈ RMk are the measurement matrix and the additive noise
vector at node k, respectively. All measurements y1, . . . ,yK

can be combined asy1

...
yK

 =

 A1

...
AK

x+

v1

...
vK

 . (6)
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Algorithm 2 Summation Propagation
Input: ck ∈ R (k = 1, . . . ,K)
Output: Ĉk ∈ R (k = 1, . . . ,K)

1: ξ
(0)
k→j = 0 (k = 1, . . . ,K and j ∈ Nk)

2: for t′ = 1 to T ′ do
3: ξ

(t′)
k→j = ck +

∑
i∈Nk\j ξ

(t′−1)
i→k

(k = 1, . . . ,K and j ∈ Nk)
4: end for
5: Ĉk = ck +

∑
i∈Nk

ξ
(T ′)
i→k (k = 1, . . . ,K)

4. PROPOSED DISTRIBUTED AMP ALGORITHM

Our goal is to reconstruct the unknown vector x in a dis-
tributed manner without sharing the measurements yk and the
measurement matrices Ak at all nodes. The update equations
of the centralized AMP algorithm for (6) can be written as

sk(t) = yk −Akx̂(t)

+
1

∆
sk(t− 1)

⟨
η′
(
r(t− 1); σ̂2(t− 1)

)⟩
(k = 1, . . . ,K), (7)

r(t) =

K∑
k=1

(
1

K
x̂(t) +

1

M
AT

k sk(t)

)
, (8)

σ̂2(t) =

K∑
k=1

∥sk(t)∥22
MN

, (9)

x̂(t+ 1) = η
(
r(t); σ̂2(t)

)
, (10)

where M =
∑K

k=1 Mk. Since the summation in (8) and (9)
involves all Ak and sk(t), they cannot be computed locally at
each node, while, once r(t) and σ̂2(t) are obtained, the nodes
can locally compute (7) and (10).

To obtain r(t) and σ̂2(t) in a distributed manner, we pro-
pose summation propagation in Algorithm 2 by modifying
consensus propagation in Section 2.2. The numerator and
the denominator of (5) can be regarded as the estimates of
the summation

∑K
k=1 ck and the number of nodes K, respec-

tively. We thus derive update equations to obtain the numer-
ator ck +

∑
i∈Nk

ξ
(T ′)
i→k, where we define ξ

(t′)
i→k := ι

(t′)
i→kν

(t′)
i→k.

By multiplying the both sides of (3) and (4), the update equa-
tion of ξ(t

′)
·→· can be obtained as

ξ
(t′)
k→j = ck +

∑
i∈Nk\j

ξ
(t′−1)
i→k . (11)

After T ′ iterations of (11), the estimate of the summation is
given by Ĉk := ck +

∑
i∈Nk

ξ
(T ′)
i→k. For the graph G with the

tree structure, Ĉk =
∑K

k′=1 ck′ holds for any k if T ′ is greater
than or equal to the diameter of G.

In Algorithm 3, we summarize the proposed distributed
AMP algorithm with summation propagation. Each node lo-

Algorithm 3 Distributed AMP Algorithm with Summation
Propagation
Input: yk ∈ RMk ,Ak ∈ RMk×N (k = 1, . . . ,K), K,

M =
∑K

k=1 Mk

Output: x̂k ∈ RN (k = 1, . . . ,K)
1: x̂k(1) = 0, sk(0) = 0, rk(0) = 0, σ̃2

k(0) = 0 (k =
1, . . . ,K), ∆ = M/N

2: for t = 1 to T do
3: local computation (k = 1, . . . ,K):

4: sk(t) = yk −Akx̂k(t) +
1

∆
sk(t− 1)

·
⟨
η′
(
rk(t− 1); σ̃2

k(t− 1)
)⟩

5: rk(t) =
1

K
x̂k(t) +

1

M
AT

k sk(t)

6: σ̂2
k(t) =

∥sk(t)∥22
MN

7: global computation via summation propagation
(k = 1, . . . ,K and j ∈ Nk):

8: θ
(0)
k→j = 0, γ(0)

k→j = 0
9: for t′ = 1 to T ′ do

10: θ
(t′)
k→j = rk(t) +

∑
i∈Nk\j θ

(t′−1)
i→k

11: γ
(t′)
k→j = σ̂2

k(t) +
∑

i∈Nk\j γ
(t′−1)
i→k

12: end for
13: r̃k(t) = rk(t) +

∑
i∈Nk

θ
(T ′)
i→k

14: σ̃2
k(t) = σ̂2

k(t) +
∑

i∈Nk
γ
(T ′)
i→k

15: local computation (k = 1, . . . ,K):
16: x̂k(t+ 1) = η

(
r̃k(t); σ̃

2
k(t)

)
17: end for
18: x̂k = x̂k(T + 1) (k = 1, . . . ,K)

cally calculates (7) and (10), and globally compute (8) and (9)
via summation propagation. Although Algorithm 3 uses the
number of nodes K and the number of all measurements M as
inputs, they can also be obtained with summation propagation
in advance because K =

∑K
k=1 1 and M =

∑K
k=1 Mk. Note

that the proposed algorithm does not require any fusion cen-
ter unlike the AMP-based algorithms in [10, 11]. Moreover,
we can extend the proposed approach for the discrete-valued
vector reconstruction using (2) and the GAMP algorithm.

5. SIMULATION RESULTS

In this section, we evaluate the performance of the distributed
AMP algorithm via computer simulations. In the simulations,
we have generated a tree graph composed of K = 50 nodes.
The diameter of the graph is 6.

5.1. Sparse Vector Reconstruction

We firstly show the performance of the distributed AMP al-
gorithm for the sparse vector reconstruction. The probability
density function of the element xn of x is p(xn) = qδ(xn) +
(1− q)ϕ(xn), where δ(·) denotes the delta function. The pa-
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Fig. 2. MSE for sparse vector reconstruction

rameter q ∈ [0, 1], which determines the sparsity level of x,
is assumed to be unknown. In the algorithm, we use the soft
thresholding function (1) and the parameter τ = τ̂ given by

τ̂ = arg max
τ≥0

∆+ 2{τϕ(τ)− (1 + τ2)Φ(−τ)}
(1 + τ2) + 2{τϕ(τ)− (1 + τ2)Φ(−τ)}

(12)

as in [12].
Figure 2 shows the average MSE obtained by the com-

puter simulations. We set N = 1000, Mk = 6 (k =
1, . . . ,K), q = 0.95 and σ2

v = 0.1. We plot the 50 curves
corresponding to each node as “distributed AMP”. For com-
parison, we also plot the performance of the centralized AMP
algorithm given in Algorithm 1 as “centralized AMP”. “theo-
retical (state evolution)” denotes the asymptotic performance
of the AMP algorithm in the large system limit (M,N → ∞
with fixed M/N = ∆), which is theoretically obtained via
state evolution [12, 14]. When T ′ = 6, all nodes achieve
the same MSE as that of the centralized AMP algorithm and
their performance are close to the theoretical prediction from
the state evolution. When T ′ = 5 and T ′ = 4, however, the
performance degrades and the MSE curves of the nodes are
not identical because the consensus in the global computation
cannot be achieved.

In Fig. 3, we show the average MSE versus q when N =
1000, Mk = 6 (k = 1, . . . ,K), σ2

v = 0.1, and T = 50.
As in Fig. 2, we can see that the distributed AMP algorithm
achieves the same performance as that of the centralized AMP
algorithm when T ′ = 6.

5.2. Binary Vector Reconstruction

Next, we evaluate the performance for the reconstruction of
binary vector x ∈ {0, 1}N . Sparse event detection [23] in
wireless sensor networks can be reduced to such a binary vec-
tor reconstruction problem. We assume that the probabilities
p1 = Pr(xn = 0) and p2 = Pr(xn = 1) are known at each
node, and use the function η(·) given by (2) in the algorithm.
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distributed AMP (T ′ = 6)
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Fig. 3. MSE versus q for sparse vector reconstruction
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Fig. 4. Success rate for discrete-valued vector reconstruction

Figure 4 shows the success rate of the proposed algorithm for
p1 = 0.9 and p1 = 0.6. In the simulation, we set N = 1000,
M1 = · · · = MK = ∆N/K, σ2

v = 1, and T = 50. We
can see that the performance of the proposed algorithm with
T ′ = 6 corresponds to that of the centralized AMP algorithm.
Moreover, the distributed AMP algorithm achieves the com-
parable performance even when T ′ = 5.

6. CONCLUSION

In this paper, we have proposed the fully distributed AMP
algorithm using the idea of consensus propagation. The pro-
posed algorithm does not require any fusion center to recon-
struct the unknown vector. Simulation results show that the
proposed algorithm can achieve the same performance as that
of the centralized AMP algorithm for both the sparse vector
reconstruction and the binary vector reconstruction.

Future work includes the extension of distributed AMP
for general graphs and the reduction of the number of com-
munications between nodes.
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