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Abstract—This paper proposes a reduced complexity signal de-
tection scheme for overloaded MIMO (Multiple-Input Multiple-
Output) systems. The proposed scheme firstly divides the trans-
mitted signals into two parts, the post-voting vector containing
the same number of signal elements as of receive antennas,
and the pre-voting vector containing the remaining elements.
Secondly, it uses slab decoding to reduce the solution candidates
of the pre-voting vector and determines the post-voting vectors
for each pre-voting vector candidate by lattice reduction aided
MMSE (Minimum Mean Square Error)-SIC (Successive Inter-
ference Cancellation) detection. Simulation results show that the
proposed scheme can achieve almost the same performance as the
optimal ML (Maximum Likelihood) detection while drastically
reducing the required computational complexity.

I. INTRODUCTION

In MIMO (Multiple-Input Multiple Output) systems, a suffi-
cient number of receive antennas may not always be available
due to the limits of the size, weight, or power consumption
of the receiver. Various signal detection schemes have been
proposed for such MIMO systems, i.e., having less receive
antennas than transmit streams, known as overloaded MIMO
systems [1]-[6]. Although ML (Maximum Likelihood) detec-
tion can achieve the best BER (Bit Error Rate) performance,
its complexity increases exponentially with the number of
transmitted streams because it searches all possible candi-
dates of transmitted signals. In order to reduce the decoding
complexity, a method applying sphere decoding [7] to the
overloaded MIMO signal detection, named SSD (Slab-Sphere
Decoding), has been proposed [1]. In SSD, the transmitted
signals are divided into two parts, the signals containing
the same number of signal elements as of receive antennas
minus one, and the remaining signals. The candidates of the
latter signals are found by slab decoding and the former
signals corresponding to each candidate are searched by sphere
decoding. On the other hand, in order to further reduce the
computational complexity, lattice reduction [8] aided MMSE
(Minimum Mean Square Error)-SIC (Successive Interference
Cancellation) detection with PVC (Pre-Voting Cancellation)
has been proposed [2]. This scheme firstly divides the trans-
mitted signals into two parts, the post-voting vector containing
the same number of signal elements as of receive antennas,
and the pre-voting vector containing the remaining elements.
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Secondly, it obtains the candidates of the transmitted signals by
determining the post-voting vectors for each pre-voting vector
candidate by lattice reduction aided MMSE-SIC detection.
Finally, it selects the best candidate in terms of the likelihood
as the detected signal. Thus, the complexity of this scheme in-
creases exponentially with the difference between the number
of the transmitted streams and that of receive antennas which
is still problematic, especially for massive MIMO systems.
Therefore, the design of efficient and low-complexity detection
schemes for overloaded MIMO is an essential issue for 5G
systems.

In this paper, we propose a reduced complexity overloaded
MIMO signal detection scheme based on lattice reduction
aided MMSE-SIC. The key idea of the proposed scheme is
to reduce the solution candidates for pre-voting vectors by
using slab decoding, which has been originally proposed for
SSD. Thus, the proposed scheme can considerably reduce
the number of required calculations for MMSE-SIC detection
compared to the conventional scheme with PVC. Simulation
results show that the proposed scheme can achieve almost
the same performance as the optimal ML schemes while
drastically reducing the computational complexity.

In the rest of the paper, we use the following notations.
Superscript T and H represent transpose and Hermitian trans-
pose, respectively. In denotes n × n identity matrix. For a
complex matrix A, Re{A} and Im{A} denote the real and
imaginary parts of A, respectively.

II. SYSTEM MODEL

Fig. 1 shows the MIMO system model with n transmit
antennas and m receive antennas. For simplicity, the number
of transmitted streams is assumed to be equal to that of
transmit antennas and precoding is not considered. Informa-
tion bits are mapped to n symbols, converted by the serial-
parallel converter, and sent from the transmit antennas. Here,
s̃1, . . . , s̃n are the symbols sent from n transmit antennas and
s̃ = [s̃1, . . . , s̃n]T ∈ S̃n is the transmitted signal vector, where
S̃ denotes the set of transmitted signals and E

[
s̃s̃H

]
= σ2

sIn.
The received signal vector ỹ = [ỹ1, . . . , ỹm]T ∈ Cm is given
by

ỹ = H̃s̃+ ṽ, (1)
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Fig. 1. System Model

where

H̃ =

⎡

⎢⎣
h̃1,1 · · · h̃1,n

...
. . .

...
h̃m,1 · · · h̃m,n

⎤

⎥⎦ ∈ Cm×n (2)

represents the flat fading channel matrix and ṽ =
[ṽ1, . . . , ṽm]T ∈ Cm is a zero mean white complex Gaussian
noise vector with covariance matrix σ2

vIm.
We also consider the real model equivalent to the complex

model (1) as

y = Hs+ v, (3)

where

y =

[
Re{ỹ}
Im{ỹ}

]
∈ RM , H =

[
Re{H̃} −Im{H̃}
Im{H̃} Re{H̃}

]
∈ RM×N ,

s =

[
Re{s̃}
Im{s̃}

]
∈ SN , v =

[
Re{ṽ}
Im{ṽ}

]
∈ RM , (4)

and M = 2m,N = 2n. S denotes the set of the real and
imaginary part of S̃ .

III. CONVENTIONAL SIGNAL DETECTION SCHEMES FOR
OVERLOADED MIMO SYSTEMS

For overloaded MIMO systems, sphere decoding and lattice
reduction aided MMSE-SIC detection are not directly appli-
cable because the channel matrix H is fat. Here, we briefly
review conventional methods to apply sphere decoding and
lattice reduction aided MMSE-SIC detection to the overloaded
MIMO systems.

A. Slab-Sphere Decoding [1]

In the same way as sphere decoding, slab-sphere decoding
finds all s satisfying

∥y −Hs∥2 ≤ C2, (5)

where C is a constant. By using QR decomposition of H, i.e.,
H = QR, (5) can be rewritten as

∥z−Rs∥2 ≤ C2, (6)

where z = QTy. Since M < N , (6) can be written as
∥∥∥∥∥∥∥∥∥∥∥∥

⎡

⎢⎣
z1
...

zM

⎤

⎥⎦−

⎡

⎢⎣
r1,1 · · · r1,M · · · r1,N

0
. . .

... · · ·
...

0 0 rM,M · · · rM,N

⎤

⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎣

s1
...

sM
...
sN

⎤

⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥

2

≤ C2,

(7)

where zi and ri,j represent the i-th element of z and element
(i, j) of R, respectively (i = 1, . . . ,M and j = 1, . . . , N ). To
find all s1, . . . , sN satisfying (7), we firstly focus on the M -th
row of z−Rs and find all sM , . . . , sN satisfying

|zM − (rM,MsM + · · ·+ rM,NsN )|2 ≤ C2 (8)

by slab decoding algorithm [1]. Once sM , . . . , sN are ob-
tained,

∥∥∥∥∥∥∥

⎡

⎢⎣
w1
...

wM−1

⎤

⎥⎦−

⎡

⎢⎣
r1,1 · · · r1,M−1

0
. . .

...
0 0 rM−1,M−1

⎤

⎥⎦

⎡

⎢⎣
s1
...

sM−1

⎤

⎥⎦

∥∥∥∥∥∥∥

2

≤ C2 − ∥zM − (rM,MsM + · · ·+ rM,NsN )∥2 (9)

becomes the inequality for s1, . . . , sM−1, where wi = zi −
(ri,MsM + · · · + ri,NsN ) (i = 1, . . . ,M − 1). Therefore
candidates of s1, . . . , sM−1 for each candidate of sM , . . . , sN
can be obtained by sphere decoding. Finally we select s
minimizing ∥y −Hs∥2 over the candidate signals.

B. Lattice Reduction aided MMSE-SIC Detection with
PVC [2]

Lattice reduction aided MMSE-SIC detection with PVC
determines each post-voting vector corresponding to each
possible pre-voting vector by lattice reduction aided MMSE-
SIC detection [8]. In the signal detection with PVC, we
divide the index set {1, . . . , n} into P = {p1, . . . , pn−m} ⊂
{1, . . . , n} and Q = {q1, . . . , qm} = {1, . . . , n} \ P . In
addition, we divide the transmitted signal vector s̃ into
s̃P = [s̃p1 , . . . , s̃pn−m ]T (pre-voting vector) and s̃Q =
[s̃q1 , . . . , s̃qm ]T (post-voting vector). Similarly, channel matrix
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H̃ = [h̃1, . . . , h̃n] is divided into H̃P = [h̃p1 , . . . , h̃pn−m ]
and H̃Q = [h̃q1 , . . . , h̃qm ], where h̃j denotes the j-th column
vector of H̃ (j = 1, . . . , n). By the above splitting, (1) can be
rewritten as

ỹ = H̃P s̃P + H̃Qs̃Q + ṽ. (10)

Moreover, we can obtain the real model equivalent to (10)

y = HPsP +HQsQ + v, (11)

where

HP =

[
Re{H̃P} −Im{H̃P}
Im{H̃P} Re{H̃P}

]
, sP =

[
Re{s̃P}
Im{s̃P}

]
,

HQ =

[
Re{H̃Q} −Im{H̃Q}
Im{H̃Q} Re{H̃Q}

]
, sQ =

[
Re{s̃Q}
Im{s̃Q}

]
. (12)

The signal detection with PVC determines signals based
on (11). Let s1P , . . . , s

K
P be all possible candidates of sP ,

where K = |S|N−M and |S| is the number of elements in
S . Assuming sP = skP (k = 1, . . . ,K),

rk = HQsQ + v (13)

can be obtained from (11), where rk = y−HPskP . Since HQ
is M×M square matrix, (13) can be regarded as the model of
MIMO systems where the number of receive antennas is equal
to that of transmit antennas. Therefore, skQ, the estimate of sQ
can be obtained by applying lattice reduction aided MMSE-
SIC detection to (13). We calculate skP and skQ for all k =
1, . . . ,K in this way and get

k̂ = arg min
k∈{1,...,K}

∥y −HPs
k
P −HQs

k
Q∥2. (14)

sk̂P and sk̂Q are the estimated values of sP and sQ.
Note that P and Q are determined as follows in [2]. MD

(Max-min Diagonal) criterion [9]

QMD = arg max
Q

{
min

i∈{1,...,M}

∣∣rQi,i
∣∣2
}

(15)

is used to get a better performance of lattice reduction aided
MMSE-SIC detection, where rQi,i denotes the element (i, i) of
the upper triangular matrix by QR decomposition of the matrix
obtained by applying lattice reduction to [HT

Q (σv/σs)IM ]T .

IV. PROPOSED SIGNAL DETECTION SCHEME

Since lattice reduction aided MMSE-SIC detection with
PVC searches all pre-voting vectors sP , the complexity in-
creases exponentially with n − m, namely the difference
between the number of transmit antennas and receive antennas.
The proposed scheme reduces the required complexity by
reducing the candidates of sP by slab decoding.

Firstly, sets P,Q are determined by MD criterion (15) as
in the case with lattice reduction aided MMSE-SIC detection
with PVC.

Secondly, we obtain the candidates of pre-voting vector sP
by slab decoding. To implement slab decoding algorithm, we
consider the model

y = H̄s̄+ v, (16)

where H̄ = [HQ HP ] and

s̄ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s̄1
...

s̄M

s̄M+1
...
s̄N

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

[
sQ

sP

]
. (17)

By using QR decomposition H̄ = Q̄R̄, we can rewrite (16)
as

z̄ = R̄s̄+ η̄, (18)

where z̄ = Q̄Ty, η̄ = Q̄Tv. The M -th row of (18) can be
written as

z̄M = r̄M,M s̄M + · · ·+ r̄M,N s̄N + η̄M . (19)

Therefore, the absolute value of z̄M − (r̄M,M s̄M + · · · +
r̄M,N s̄N ) corresponding to the true transmitted signals of
s̄M , . . . , s̄N tends to be smaller than that for the other
values of s̄M , . . . , s̄N . Thus, by slab decoding we find all
s̄M , s̄M+1, . . . , s̄N satisfying

|z̄M − (r̄M,M s̄M + · · ·+ r̄M,N s̄N )|2 ≤ C, (20)

where C is a constant. Here, it should be noted that, since
sP = [s̄M+1, · · · , s̄N ]T , slab decoding gives the candidates
for not only sP but also s̄M . However, we utilize the can-
didates of sP only, and s̄M will be detected as one of the
elements of the post-voting vector using lattice reduction aided
MMSE-SIC later. Let L denote the number of candidates of
sP obtained by slab decoding, and we define the candidates
as s1P , . . . , s

L
P .

Next, we obtain the post-voting vectors s1Q, . . . , s
L
Q corre-

sponding to s1P , . . . , s
L
P by lattice reduction aided MMSE-SIC

detection. Assuming sP = sℓP (ℓ = 1, . . . , L), (11) can be
rewritten as

rℓ = HQsQ + v, (21)

where rℓ = y − HPsℓP . By applying lattice reduction aided
MMSE-SIC detection to (21), we obtain sℓQ corresponding to
sℓP . Firstly, we get the model equivalent to (21)

r̂ℓ = ĤQsQ + v̂Q, (22)

where

r̂ℓ =

[
rℓ

0M

]
, ĤQ =

[
HQ
σv
σs
IM

]
, v̂Q =

[
v

−σv
σs
sQ

]
. (23)

Secondly, we obtain the unimodular matrix TQ satisfying
Ĥ′

Q = ĤQTQ by applying lattice reduction to ĤQ. Eq. (22)
can be rewritten as

r̂ℓ = Ĥ′
Qs

′
Q + v̂Q, (24)

where s′Q = T−1
Q sQ. By using QR decomposition Ĥ′

Q =
Q̂′R̂′, (24) can be rewritten as

ẑℓ = R̂′s′Q + η̂Q, (25)
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Fig. 2. BER performance (n = 4,m = 2, QPSK)

where ẑℓ = (Q̂′)T r̂ℓ, η̂Q = (Q̂′)T v̂Q
When applying MMSE-SIC detection to (25), we cannot

obtain the estimate of s′Q by an unconstrained quantization
because the true value of s′Q depends on TQ and H. Then
as in [10], we translate the model so that each element of
the transmitted signal vector is an integer. For example, when
S = {1/2,−1/2}, we consider

sQ,Z = sQ +

⎡

⎢⎣

1
2
...
1
2

⎤

⎥⎦ ∈ ZN−M (26)

and rewrite (25) as

ẑℓ = R̂′

⎛

⎜⎝s′Q,Z −T−1
Q

⎡

⎢⎣

1
2
...
1
2

⎤

⎥⎦

⎞

⎟⎠+ η̂Q, (27)

namely

ẑℓ + R̂′T−1
Q

⎡

⎢⎣

1
2
...
1
2

⎤

⎥⎦ = R̂′s′Q,Z + η̂Q, (28)

where s′Q,Z = T−1
Q sQ,Z. s′Q,Z is an integer vector regardless

of the value of H because TQ is a unimodular matrix and
sQ,Z is a integer vector. Therefore we can obtain the estimate
of s′Q,Z by a unconstrained quantization. sℓQ can be obtained
by using (26) and s′Q,Z = T−1

Q sQ,Z.
Finally, we select the best candidate in terms of likelihood

as the detected signal. We obtain

ℓ̂ = arg min
ℓ∈{1,...,L}

∥y −HPs
ℓ
P −HQs

ℓ
Q∥2 (29)

and select sℓ̂P and sℓ̂Q as the estimates of sP and sQ, respec-
tively.

0 5 10 15 20 25 30

BE
R

10 -4

10 -3

10 -2

10 -1

10 0

PVC-MMSE-SIC
SSD
ML

Fig. 3. BER performance (n = 6,m = 2, QPSK)
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Fig. 4. BER performance (n = 4,m = 2, 16-QAM)

V. SIMULATION RESULTS

In this section, we evaluate the BER performance of the
proposed scheme as well as the number of possible solution
candidates obtained by slab decoding in the proposed scheme
to give an idea of the complexity reduction achieved by
the proposed scheme. H̃ is time-invariant and composed by
i.i.d. complex Gaussian random variables with zero mean
and unit variance. The BER performance is averaged over
a thousand transmit transmitted signal vectors, each passing
through a hundred independent channel realizations H̃. As the
algorithm for lattice reduction, LLL (Lenstra-Lenstra-Lovász)
algorithm [11] is used in the same way as in [8].

Figures 2, 3, and 4 show the BER performance of the
proposed scheme with different values of C for n = 4,m = 2
with QPSK modulation, for n = 6,m = 2 with QPSK
modulation, and for n = 4,m = 2 with 16-QAM, respectively.
The BERs of the optimal ML detection (ML), the conventional
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lattice reduction aided MMSE-SIC detection (PVC-MMSE-
SIC), and slab-sphere decoding (SSD) are also plotted in
the same figures. In all the figures, we can see that the
conventional lattice reduction aided MMSE-SIC detection
almost achieves the same BER performance as the optimal ML
detection. It should be noted here that the proposed scheme
with rather small values of C also can achieve a similar BER
performance as the optimal ML detection in all the three
figures, while the proposed scheme with a large value of C
results in exactly the same scheme as the conventional lattice
reduction aided MMSE-SIC.

Next, Fig. 5 plots the amount L/|S|N−M in percentage,
where L denotes the number of candidates of sP obtained by
slab decoding in the proposed scheme, and |S|N−M represents
that in the conventional scheme with PVC. We observe that the
larger the difference n−m and the higher the modulation level,
the more effective the proposed scheme, as it enables a larger
reduction of the number of candidates. In fact, the larger n−m
and the modulation level, the higher the ratio of erroneous
vector elements and hence of candidate vectors for sP that can
be eliminated. By reducing the candidates for sP , the required
calculation of lattice reduction aided MMSE-SIC detection for
sQ is also reduced. Therefore, the proposed scheme is able
to reduce the computational complexity as compared to the
conventional schemes, while achieving a performance close to
optimal.

VI. CONCLUSION

In this paper, we have proposed the reduced complexity
signal detection scheme for overloaded MIMO systems. While
the conventional scheme with PVC searches over all pre-voting
vectors, the proposed scheme reduces their number by making
use of slab decoding. Simulation results have shown that the
proposed scheme achieves a BER performance that is close
to optimal while largely reducing the required computational
complexity.
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